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Chapter 1
MSFC FLAT FLOOR FACILITY
1.1 INTRODUCTION

This is the final report prepared for NASA George Marshall Space
Flight Center (MSFC) by The University of Alabama in Huntsville (UAH) as
part of the deliverables of a contract (NAS8-35670) awarded to UAH in 1984,
The initial period of performance was eight months, and two subsequent
modifications to the contracts were made. The entire task terminated in
May 1985. The scope of work entails the development of software to drive
the flat floor simulation facility at MSFC.

At the conclusion of the contracted period, a final report was not
submitted by UAH because it was not possible to verify the functionality of
the control software. This was due to a series of hardware modifications
of the facility. In January 1987, most of the hardware modifications and
upgrades were completed, and the system was available for testing the soft-
ware. The principal investigator, who, by that time had left UAH, worked
with MSFC engineers at no cost to MSFC, conducted tests to demonstrated
that the software was indeed working as expected. The mobile base was part
in a closed-loop control in Janua;y 1987. This explains the delay in sub-

mitting the final report.

1.2 THE ORBITAL MANEUVERING VEHICLE (QMV)

The Orbital Maneuvering Vehicle (OMV) has been designed to operate as
a remotely controlled space teleoperator. This vehicle will be deployed as
a payload from the space shuttle. Control of the OMV will be from a ground
station, or a control room located on the shuttle or the space station.

The operator controlling the OMV is physically remote from the module and



exercises control over the vehicle. The main mission of the OMV will be to
increase the level of space productivity without increasing human risk.
The OMV will not only reduce risk in orbital activities, but also increase
the capacity to perform strenuous orbital operations. It will drastically
reduce the level of EVA for a given mission. Unlike EVA, the OMV will not
be affected by prolonged operational durations; also, it will be able to
operate at ranges beyond EVA capabilities. The OMV has been designed to
handle significant masses on the order of 45,000 pounds. The design should
give the OMV the capability to:

° Deploy satellites in orbits that are out of the shuttle's range

° Rendezvous and dock with existing orbital payloads

° Resupply payloads with fuel and other consumables

® Perform repair and service operations on orbital payloads when

fitted with a flight telerobotics system (FTS)
° Transfer payloads to or from orbit to the orbitting shuttlie or
space station.

With these capabilities, the OMV will have a definite impact on the way
orbital operations are carried out. Figure 1-1 shows an application over-
view. To assemble an accurate simulator, the preliminary design of the
actual OMV was studied. This design was reported in the Preliminary
Definition Study of the Teleoperator Maneuvering System (TMS), prepared by
program development at MSFC (l1]. This document is used to obtain critical
specifications that are needed for simulator design. These specifications
include the vehicle's size, shape, mass, docking mechanisms, and attitude
control system. The preliminary design of the Orbital Maneuvering Vehicle
is shown in Figures 1-2 through 1-4. The following is a list of key

assumptions and guidelines for the MSFC reference design:
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° Payload placement/retrieval capability

° Shuttle orbiter based with LEO/GEO mission capability

° Minimum practical length and weight

® Minimum orbiter interfaces

° Installation capability at multiple locations in cargo bay

° Satisfaction of safety requirements of NASA

° Monitoring and safing capability from orbiter AFD

° Potential for being space based at either LEQ or GEO

° Control from ground station

° C(Capability to accommodate add-on kits and/or modifications for

future extended capability and unique mission activities

° Maintain modularity to extent practical to accomodate hardware

replacement

° On-orbit serviceability should be a design consideration

° Use of existing/developed hardware to extent practical

° Redundancy in critical areas

° Degree of autonomy necessary to preclude continuous ground control

° Safe hold capability to survive a single failure

° Design for 10 year life with refurbishment.

In order to verify these operational concept, a simulator was needed
to permit extensive testing, modeling, and evaluation of the parameters
involved in orbital operations. These tests include docking mechanisms,
target motion, and human factors. Flexibility is of key importance in
developing a simulation of his type. Ease in reconfiguring the simulator
is essential. This reconfiguration may be through a series of hardware
upgrades, such as additional degrees of freedom, propulsion system changes,

front end assemblies, etc., or through software enhancement in the OMV

mathematical model.



1.3

FLAT FLOOR FACILITY

The overall simulation system is shown in Figures 1-5 and 1-6. The

three major subsystems are:

(1) Control console equipped with hand controller and display units

(2) Mainframe containing the OMV response model, orbital mechanics,
and state vector transformation

(3) Mobility vehicle (TOM-B) with the flat floor and dynamic target

simulator

Each of these subsystems have been further subdivided into modular com-

ponents to give added flexibility. Detailed implementation will be given

for each of the major subsystems. The overall control flow in block

diagram form is given in Figure 1-7. The function and responsibilities of

each subsystem can be summarized in the following:

1.4

Control Room - The control room is to serve as the man-machine inter-

face. This interface consists of a command station (hand
controllers) and sensory feedback devices (video monitors, status
screens, etc.). The commands are then sent to the mainframe sub-

system.

Mainframe Subsystem - The mainframe subsystem is to accept the hand

controller commands, process these commands with respect to the OMV
mathematical model, then generate and transmit the appropriate mobi-
lity base commands.

Mobility Base - The mobility base subsystem is to execute the

generated commands from the mainframe. This consists of a number of

vehicle movements to achieve the intent of the hand controller input.

SUBSYSTEM DESCRIPTION
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Figure 1-7. Control Flow



1.4.1 Control Room Subsystem

The control room is the center of all teleoperation activities. This
control room may be located on the ground, in the space shuttle or within
the space station. The simulator control room is located. adjacent to the
flat floor, and its interior is depicted in Figure 1-8. From this loca-
tion, an operator can control the simulator vehicle and cognitively sense,
through various feedback methods, the overall operation. This is the idea
of telepresence. The degree of telepresence is a function of the sensory
feedback. This section will outline both the current and proposed types of
sensory feedback. The degree of telepresence necessary for successful OMV
man-machine interfacing is not well defined at this point in time.

Critical human factors design is, however, beyond the scope of this work.

The main feedback element is direct video from cameras mounted on the
vehicle. The video feedback is displayed on the screens in front of the
pilot, as shown in Figure 1-8. Each screen will give a different view
relevant to the operation to be performed. As currently configured, this
is the only sensory feedback available to the operator. Modifications to
be made to the control room include adding a status screen so that the
operator will have pertinent data such as range, range rate, fuel deple-
tion, force/torque, etc. NASA is at present evaluating the use of
stereoscopic vision systems and 3-D displays. This would allow the opera-
tor to observe one main screen as opposed to correlating the views from
several screens. Other modifications may include optical proximity sensing
for collision detection, tracking, and centering operations. Touch
screens, menu driven subsystems, and a mouse may be used. These feedback
devices recreate a realistic scenario of the workspace within the control

room. This technique will allow effective remote servicing capability.
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The other major function of the control room subsystem is to accept
operator control inputs. Control authority must be fast and efficient to
permit teleoperation. The central input devices used are two 3 DOF hand
controllers.

In the present implementation two hand controllers are used. One is
used to control the translational axes - X, Y, Z, while the other controls
rotational motion - roll, pitch, and yaw. These hand controllers give the
operator full control over the vehicle. Full detail of the hand controller
hardware and software will be given later.

The communication system that connects the control station to the OMV
is a very critical component in the subsystem. This system defines the
feedback and control limitations involved in teleoperation. Specifications
for the OMV include communication via the Tracking and Data Relay Satellite
System (TDRSS). A1l communication will be processed through this link.
Because of the inherent time delay constraint involved when transmitting
over large distances, NASA has chosen to incorporate this time delay into
the OMV simulation. This will allow testing of variable time delays and
their effects on the command and control that the operator will experience.
The data rate limit for TDRSS is 1 Mbps down and 10 Kbps up, which requires
that the standard video data rate be reduced to lower frame rates, lower
pixel resolution, and adaptive encoding [2]. Figure 1-9 gives the overall

communication data flow.

1.4.2 Mainframe Subsystem

The mainframe subsystem is responsible for accepting inputs from the
control room subsystem and generating the appropriate commands to the mobi-

1ity base subsystem. The mainframe subsystem hardware is composed of a
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mainframe digital computer and the communication equipment. Connection
between the mainframe subsystem and the mobility base subsystem is achieved
via the communications network. The mainframe subsystem software consists
of a module code named OMM, which is a mathematical model of the actual
OMV. Each of the primary hardware and software components will be
described in the subsequent chapters.

The computer used to process all off-vehicle computations is Digital
VAX 11/750 minicomputer. This computer will be central in processing and
controlling the data flow between the control room and the mobility base.
The VAX 11/750 will process the hand controller inputs_and generate the
appropriate commands to the mobility base. This computer is responsible

for generating the major cycle interrupts.

1.4.3 Mobility Base Subsystem

The third major component of the OMV simulation is the mobility base
subsystem. This subsystem receives commands from the mainframe subsystem
via a telemetry link. The responsibility of the mobility base subsystem is
to execute these commands. The mobility base subsystem contains both hard-
ware and software components. The hardware includes the mobile base
vehicle (code named TOM-B), the Orbital Maneuvering Vehicle mockup module,
the flat floor, and the target motion simulator. A description of the
mobile base (TOM-B) and its associated subsystems will be given in full
detail. The software component of this subsystem consists of the on-board
processing logic of TOM-B; it's design, implementation, and verification
will also be given in complete detail. The flat floor on which the mobile
base traverse measures 86 feet by 44 feet and is shown in Figure 1-10. The

floor was constructed in 1982 to test vehicles with air bearings. It is
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within .00l inch between any adjacent square foot and has an overall flat-
ness of .032 inches in the plane. It has a reinforced concrete foundation
with a special epoxy resin surface for Tow friction.

The Orbital Maneuvering Vehicle mockup is shown in Figure 1-11. This
mockup module was constructed according to the actual Orbital Maneuvering
Vehicle specifications[l]. This mockup was mounted on the front of the
mobile base. Figure 1-12 shows this arrangement. This arrangement facili-
tates realistic simulation of hardware-related operations such as docking,
camera placement, etc.

A target motion simulator was constructed to replicate the motion of
an orbiting target. Since the Orbital Maneuvering Vehicle will have many
diverse tasks, a general purpose target was constructed, that is, the
target was constructed with a standard docking mechanism mounted on its
front. The target is mounted on the end of a robot arm. This robot arm,
built by Kadar Corp., has a 20 foot reach with a 1000 pound payload capabi-
1ity. With appropriate software, this robot can emulate spin and pre-
cession motions which are common in orbiting satellites. The target motion

simulator is mentioned because it is part of the overall Orbital

Maneuvering Vehicle simulation, and will be used in testing. The detailed
design and implementation is beyond the scope of this paper and will not be
presented here. This robot arm, unique because of its size and performance
specifications, is shown along with the mounted target in Figure 1-13. The
mobility base has been code named TOM-B and will be referenced as such.
TOM-B is a vehicle with air bearings that floats on the flat floor. The
vehicle has six degrees of freedom. The vehicle is capable of transla-
tional and rotational motion. The X and Y translational and yaw motion is

accomplished through the air bearing pads. The Z axis is driven by a DC



ORIGINAL PAGE I3
OF POOR QUALLTY

"

TOM-B Simulating Docking

Figure 1-11.



ORIGINAL PAGE IS
OF POOR QUALITY

X W
SRR
\i\\\\%\

AR Y I

TOM-B with Docking Mechanism

Figure 1-12.



A%

N

N

X

ORIGINAX PAGE IS
OF POOR QUALITY

L
NR

Y

oy N N
NN

N

N
e

»e

\w 3

-

RSN

N

SN

N

N

NN

Target Motion Simulator

Figure 1-13.




drive motor and associated gear train. Similarly, the rotational motion of
pitch and roll is fulfilled by DOC drive motors and gear trains. X and Y
translation is confined by the dimensions of the flat floor, which is 96
feet diagonally. Z motion is restricted to plus or minus 20 inches from
the center of the drive train. Pitch is limited to plus or minus 20
degrees referenced from the horizontal center line. The other rotational
axes, yaw and roll, are continuous. By executing appropriate motions,
realistic Orbital Maneuvering Vehicle motions can be achieved. Note that
the commands received from the mainframe subsystem emulate orbital motion.
Thus, the motion of TOM-B is not necessarily that of the mockup module.

For example, if the mockup module were to execute a yaw about it's Z axis,
the output of the mainframe subsystem would generate a sequence of commands
to TOM-B to execute a translation plus a rotation. The characteristics of

TOM-8 are shown in Table 1-1.

TABLE 1-1
Approximate mass: 1360.5 kg
Moment of Inertia: 100 kg-m
Mass of fuel: 136.4 kg
Number of thrusters: 24
Thrust developed: 13.2 Newtons/thrust

Two sets of three thrusters, each of which is capable of delivering 13.2
Newtons of force, are mounted on each corner of the vehicle. Cold
compressed air at 3500 psi is used as propellent. Six propellents tanks
are used, four of which are used for thruster firings and two for the air
bearing pads, as shown in Figure 1-14. Note that the thrusters are non-

throttable. The translation in the X and Y axes, as well as yaw motion of
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the vehicle, are obtained by firing the appropriate thrusters. Translation
along the Z axis, as well as pitch and roll are carried out using stepping
motors fitted with resolvers. The overall hardware organization is given
in Figure 1-15.

The computer and associated electronics are mounted on the rear of
the vehicle. The control electronics include the A/D, D/A, modem, and sen-
sor processing boards. The vehicle is fitted with X and Y accelerometers.
To give orientation feedback a gyroscope is used. In the initial hardware
configuration the accelerometers are used for measuring velocity and posi-
tion, and the gyro is used to measure orientation of the vehicle. The gyro
installed on TOM-B has a total error rate of 5 x 10-6 degree/sec, which is
more than adequate to provide feedback information on angular velocity and
displacement. The accuracy is not present with the accelerometers([27].

The large error arises from the facts that:

1) The sensor has a high drift rate.
2) The signals from the sensors must be integrated numerically to
obtain the translational displacement.

3) The errors are cumulative and propagate with time.

The accelerometers and gyro are actually designed to measure accelerations
and angular velocities, respectively. When the signals must be integrated

to get displacement, the following steps must be carried out:

1) They must be sampled frequently within every major cycle.

2) The signals must be conditioned and corrected for bias, scaling,
offset, and drift.

3) To provide reliable displacement, sophisticated integration

algorithms must be used.
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A1l these factors contribute to large computational overhead. In addition,
there is no meaningful method for correcting the drift, other than using
some external reference scheme.

Since position control is used in the present system, it is mandatory
to have an accurate navigation system. This effectively rules out the use
of accelerometers to provide positional feedback. An alternative, simpler
navigation system is needed. This new navigation system does not replace
the accelerometers; they are still needed to provide the rate feedback.

The navigation system works on the principle that reflectors are mounted
around the perimeter of the floor. A positionable distance meter, mounted
on the vehicle, detects these reflectors. The system has two of these
devices mounted on the front of the vehicle. It is estimated that a posi-
tional accuracy of several millimeters can easily achieve in this way.
More importantly, the computation is relatively straightforward, fast, and
the error does not propagate with time. This navigation system provides
position feedback necessary for control of the vehicle. A detailed
discussion of the design and implementation of the navigatibn system will

not be presented here.

1.5 SOFTWARE DESCRIPTION

The current task as mentioned primarily is to develop suitable soft-
ware as part of the flat floor simulation system so that it can be used to
realistically study the behavior of the OMV. The software is made up of
three major modules: a) the OMV mathematical model (OMM) which accepts
operator input from the control station and compute the state of the OMV,
b) the State Vector Transformation Module (SVX) which translates the OMV

state vector into a set of commands for the mobility base, and c) mobility



base control logic TOM-B. When these commands are executed, the mobility
base would have moved in such a manner that the OMV mockup mounted on it
would have replicated the motion of the OMV. Figure 1-16 depicts the con-
nectivity of these components.

Chronologically, SVX was developed first, followed by TOM-B, and OMM
was developed last. However, OMM and SVX was tested and verified first, as
these two modules are hardware independent, while TOM-B was test verified
last. For the purpose of this report, the OMV mathematical model OMM will
be describes in Chapter 2, the State Vector Transformation module SVX will
be described in Chapter 3, and TOM-B .in Chapter 4. A summary of testing
procedures and conclusions will be presented in Chapter 5, together with

the test date obtained.
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Chapter 2
OMV Mathematical Model (OMM)
2.1 INTRODUCTION

This report discusses the design and implementation of OMM - a mathe-
matical model of the Orbital Maneuvering Vehicle [3]. The Orbital
Maneuvering Vehicle (OMV) can be maneuvered by remote operator control.

Its motion is completely specified by its equations of motioh. The solu-
tion of the equations of motion yields its position [X,Y,Z]T, velocity
[X,Y,Z1T, orientation [r,p,y17 and their rates [r,p,ylT where r, p and y
stand for roll, pitch and yaw respectively. From these dynamic quantities,
a l4-component state vector can be generated. This state vector contains
all the necessary information to completely specify the state of the
vehicle in space at any time.

The OMM simulates the motion of the Orbital Maneuvering Vehicle in
space. OMM is a software subsystem that is an integral part of the soft-
ware system used to drive the MSFC flat floor simulation system. In this
installation, a set of hand contro]]eré is used to maneuver the OMM

(Mathematical model) and the state vector obtained is used as input to a

second software module called SVX (the State Vector Transformation module)
which transforms it to a suitable set of commands to be transmitted to, and
thereby controlling the motion of the mobile base on the flat floor. The
over-all relation is as shown in Figure 2-1 as can be seen in this figure,
the OMV module encompasses the vehicle response module as well as the orbi-
tal mechanics module. In order to optimize execution speed, these two
modules are not implemented as separate entities.

The State Vector Transformation Module will be discussed in the next

chapter. Throughout this report, it is important to bear in mind that the
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OMM simulates the motion of the Orbital Maneuvering vehicle but otherwise
has no physical relationship with the Orbital Maneuvering Vehicle. The
mobility base on the flat floor will attempt to move in such a manner that
a mockup module mounted on it will replicate the motion of the Orbital
Maneuvering Vehicle, using a set of commands derived from the state vectors
generated by OMM. Otherwise the mobile base is not related to the OMV.

the mockup module is not the Orbital Maneuvering Vehicle. One of the
objectives of the flat floor system is to simulate docking of the OMV with

a target vehicle [4].

2.2 THE OMV MODEL

This section describes a simplified mathematical model of the Orbital
Maneuvering Vehicle. A more detailed model is being developed elsewhere at
MSFC. In the present model, several simplifications and assumptions have
been made. The objective is to develop quickly (and hence the simplifica-
tion) a model that can be used to drive the flat floor system.

Before discussing the model in any detail, it is necessary to define

the various coordinate systems used in this work.

A. The Local Vertical Frame (LVF)

Imagine a space craft in an orbit around the earth. It is immaterial
whether this is the Orbital Maneuvering Vehicle or the target vehicle. LVF
is a coordinate system with its origin at the center of mass of this space
craft such that Z-axis lies in the plane of the orbit and is directed away
from the center of the earth. The Y-axis is chosen to be parallel to the
orbital angular momentum vector and X-axis is tangential to the orbit as
shown in Figure 2-2. The position, velocity as well as orientation of the

second vehicle are described in LVF and is therefore relative to the
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orbiting vehicle. Throughout-this work, it is assumed that the target

vehicle is the orbiting vehicle.

B. OMV Body Frame

This is a body fixed reference frame with its origin fixed at the
center of mass of the OMV, and its axes w%]l be denoted by 1, 2 and 3
respectively. Initially, at the start of the simulation, 1, 2 and 3 axes
line up with X, Y and Z axes respectively. As can be seen from Figure 2-3,
the axis of symmetry is the l-axis.

In order to construct the model of the Orbital Maneuvering Vehicle,

the following assumptions are made:

1. The OMV is assumed to be a circular disk of constant mass and
having a uniform mass distribution. This assumption may seem
unreasonable at first glance, but one quickly realizes that the
detail shape of the OMV is unimportant as long as one knows the
mass and propulsion characteristics of the Orbital Maneuvering
Vehicle. In the present model, the mass characteristics are sum-
marized in Table 2-1. These figures are taken from the MSFC
Preliminary Definition Studies.

2. The OMV is manipulated using signals from a set of hand
controllers [5]. These signal can be classified into two groups.
The first group is used to simulate a force acting through the
center of mass of the OMV. In other words, one can, from this
group of signals, generate an acceleration vector a = [a1,ap,a3]T
in the body frame. The other group of signals simulates rota-
tions about 1, 2 and 3 axes, namely, a vector w = [wl,wg,W3]T.

Assumptions 1 and 2 mean that detailed knowledge of the shape,



Figure 2-3. OMV Body Frame



Dynamic Variable Value unit

Mass M 3282.75 kg
Iy 7048.37 kg m?
Iy 3713.95 kg m?
I35 3713.95 kg m?

Table 2-1. OMV Mass Characteristics




thrust level and placement of the thruster and so forth are not
really needed. The present control mode is the only mode imple-
mented.

3. Circular orbits are assumed. The altitude of the orbit can be
anything from 150 to 1500 nautical miles which is within the
designed operating range of the Orbital Maneuvering Vehicle.

4, Orbital mechanics is an important part in describing the motion
of the OMV and is therefore implemented. Other secondary pertur-
bation effects are totally ignored.

5. The state of the OMV is computed and updated 10 times per second.
The period of 0.1 second will be referred to as a major cycle
throughout this report.

The equations of motion of the OMV can be discussed in terms of the

rotational part and translational part.

2.3 ROTATIONAL EQUATIONS OF MOTION

The rotational equation of motion can be written as:

where L = Iw is the angular momentum vector and t is the applied torque. I
is the moment of inertia tensor and w is the body rate. The solution can
be drastically simplified by choosing the body axes 1, 2 and 3 such that [

is diagonal [6,7], that is:

o -1

I, 0 0

I = 0 I,, 0
0 0 I35
e -



Remember that w = [wy,wp,w3]T is obtained from the hand controller
signals. The solution of the rotational equations of motion yields ¢ , 6
and ¢ the three Euler angles. The order and sense of rotation is chosen in

the conventional manner [8], that is:
[ elile 130 v,

To reduce computational overhead, quaternions are used to specify the atti-
tude of the OMV rather than the Euler angles themselves. It has been
proven that the two representatives are exactly equivalent [9]. A quater-

nion q may be written as:
q = iq1 + jaz + ka3 + a4 = [41,92,93,9417
and satisfies the relation

2 2 2 2 1
q; + 4qp + 493 + 44 =

An object whose attitude is described by the three Euler angles relative to
some reference frame can be treated as a single rotation by o about an

Euler axis E = [E1,E2,E3]T. Theory has shown that this is the shortest
angular path[lo]in the sense that a is less than the algebraic sum of ¢ , 6
and ¥. The angle a and the Euler axis can be expressed in terms of the

quaternion q as:

0O
o
n

NS
[[]

Q4




: .
E = (iq) + jqp + ka3) / (g + qp + q3) °

Since the attitude control system of the OMV can control the roll, pitch
and yaw axis independently, we expect the roll, pitch and yaw [r,p,y]T to
be proportional to the respective components of E [10]. In fact, the
following relation holds:

T _ T
[f.P,Y] = [ aExv GE aEz]

y'
Quaternion algebra leads to further computational economy when successive
rotations need to be calculated. Let say, at any instant, the attitude of

the OMV is specified by the quaternion q1 relative to some non-rotating

frame. Suppose further that an instant later, the vehicle's attitude has
changed, having rotated by ¢. ¢ and ¥. These angular displacements are
measured relative to the rotated body frame. If the new attitude is
described by a second quaternion g2, the attitude of the vehicle, relative

to the non-rotating frame [11,12] is then given by

q = q142

This is an important advantage because if at the beginning of the simula-
tion, the body frame is aligned with the LVF (as specified by the quater-
nion qg = 0,0,0,13T), then the attitude of the OMV relative to the LVF,

after n successive rotations is simply:

q = 904192...n

Of course, the attitude of the vehicle after the n+l-th rotation is q =

Gndn+1. Thus, the attitude of the vehicle can be computed from the pre-



vious quaternions. This recursive property gives rise to quite a com-
putational advantage, especially since there are only four elements in a

given quaternion versus the nine elements of a direction cosine matrix.

2.4 EQUATIONS OF MOTION

The trans]ationa] equations of motion [8] has been derived in detail
in Appendix I, and will not be repeated here. In essence, we seek solu-
tions to a set of three simultaneous, coupled second order differential

equations of the form:

= Ay - 2w Z
. 2Y
Y = Ay - w
2 = A, + 2aX + 34z

Here, the position and velocity vectors [X,Y,Z1T and (X,Y,Z17 refer to the
position and velocity of the OMV relative to the target vehicle, as
expressed in Local Vertical Frame. w is the orbital velocity, and A =
[AX,Ay,AZ]T is the linear acceleration vector in LVF. Remember that the
hand controller signals give rise to an acceleration vector a = [a1,ap,a317

in OMV body frame. Thus, one can obtain A from a using the transformation:
A=cC-la

where C-1 is the inverse of the direction cosine matrix which can be

derived from the quaternion q = [q],a2,a3,a4]7 as:

(44 + 9] - q2 - 93 2(q1a2 - 43d94)  2(q143 + q2q94) |
c-l =) 2(qua2 + 9304 a4 - q1 + a2 - a3 2(q2q3 - q104)

2(a193 - 92d4) 2(qoq3 +g194) 94 - 91 - 92 + 93
3




It is obviously impractical to seek an analytical solution to the
translational equations of motion. Numerical methods must be used. In the
present work, the Adam-Bashforth method is used. For this purpose, each
major cycle is subdivided into N (normally 10, but see later section) sub-
intervals, each of which will be referred to as a minor cycle. It is
necessary that the acceleration vector A be computed for each minor cycle,
and stored in an acceleration matrix. At the end of N minor cycles, this
acceleration matrix is used to obtain the numerical solution for the entire
major cycle. A l4-component state vector is then assembled, and their com-

ponents are listed below:

S(1) - S(3) -- relative position vector in LVF
S(4) - S(6) -- relative velocity vector in LVF
S(7) - S(9) -- angular momentum vector in LVF

S(10) - S(13) -- attitude quaternion

S(14) -- mass in kilograms
The angular momentum vector in LVF can be deduced as follows. Since the
body rate w = [wl,wz,w3]T is known, one can calculate Lg in body frame

using the relation

Lg = Iw
L =C-lLg

where C-1 is the inverse of the direction cosine matrix.
The state vector serves as input to the State Vector Transformation
module (SVX). This module has been designed and implemented and will be

described in Chapter 3.

2.5 SYSTEM DESIGN AND IMPLEMENTATION



The design and implementation of the present system is best discussed

in the following sub-sections:

A. Hand Controllers

The hand controllers allow the operator to manipulate the Orbital
Maneuvering Vehicle in terms of translation énd attitude. In the present
system, hand controller signals are used to maneuver the OMV model. The
hardware is configured to provide 12 bits of information. The first 6 bits
pertain to translation, while the remaining 6 bits pertain to attitude
control. During development, the 12 bits are simulated by reading them
from a disk file (HNDSGL.DAT) as 12 single digit integers. This process is
carried out in a subprogram called HNDCTL. In actual implementation, this
subprogram must be replaced by a suitable device driver.

The bit assignment is shown in Table 2-2. It will be noted that 1
will be used to denote the "on" state while O will be used to denote the
"off" state. The subroutine HNDCTL contains sufficient logic to ensure
that when both bits assigned to a given axis are on, they will be treated
as both off (that is, no acceleration along, or rotation about, that axis)
to conserve fuel usage. The main purpose of this subroutine is to examine

the 12 bits from the hand controllers and return two vectors a and w where
a =[a},a2,a3]7 and w = [wy,wp,w3lT

whose meaning have been explained in the previous section. It is important
to remember that both a and w are expressed in the OMV body frame.

Ideally, the hand controllers signals should be sensed and updated
every minor cycle. But because of timing considerations they will be

sensed once every major cycle, and it is explicitly assumed that the bit
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Table 2-2.

Meaning

Acceleration along
Acceleration along
Acceleration along
Acceleration along
Acceleration along

Acceleration along

-3

direction

direction

direction

direction

direction

direction

+ roll; CCW rotation about l-axis

- roll; CW rotation about l-axis

+ pitch; CCW rotation about 2-axis

- pitch; CW rotation about 2-axis -

+ yaw; CCW rotation about 3-axis

~ yaw; CW rotation about 3-axis

Hand Controller Bit Assignments



states do not change during the entire major cycle. This is not an
unreasonable assumption, since one major cycle is 0.1 second, which is in
the neighborhood of the average reaction time of the human operator.
Besides, the OMV does not have a fast response because of its large mass
and low thrust levels.

The acceleration vector a must be expressed in LVF before it can be
used in solving the equations of motion. In the OMV software, this is
carried out as mentioned previously by:

a) Calculating the inverse of the direction cosine matrix C'l,

b) Transforming the vector a to A in LVF, and

¢) Placing A in an acceleration matrix AA.

Step a) is carried out by a subroutine called DCSINV while steps b) and ¢)
are carried out by subroutines DMUL and STORE in subroutine MOTION. At the
‘end of the N minor cycles, the subroutine SOLVE is invoked to obtain solu-

tions to the equations of motion numerically.

B} Numerical Solutions:

A three step Adam-Bashforth method [15] is used to obtain solutions
to the equations of motion. This method is well known, and will not be
elaborated here. Essentially, the set of three coupled second differential
equations are re-written as a set of six simultaneous first order differen-
tial equations, and the solution computed. The six initial conditions
needed for the computation are provided by the six components of the rela-
tive position and velocity vectors. Subroutine SOLVE takes the relative
displacement and velocity vectors as initial conditions of the previous
major cycle, and returns the new positions and velocity vectors. A

subroutine called STATE is then invoked to assemble the state vector.



C) Output Section:

A subroutine called QUTPUT is responsible for conveying information
to the outside world. In normal operations, no output is generally
expected, but during testing, it is necessary to be able to monitor the
progress of the simulation. At present, one can, via the use of flags,
control the form and type of output. By way of example, one can request
OMV to print a time sequence of state vectors at 1 second intervals on the
printer, or display the position and orientation of the mobile base (on the
flat floor) graphically, or disable all outputs altogether.

A fairly simple graphics package called PLOT is implemented to pro-
vide graphics output. This package is developed for the initial software
checking only; namely to provide to operator with some form of visual out-
put and is not construed as a deliverable. It must be emphasized that this
package is hardware dependent, and is not compatable with the PDP 11/34
mini-computer. The present graphics package runs on an IBM Personal
Computer fitted with a TECMAR GRAPHICS MASTER board and an IBM monochrome
monitor. A resolution of 640 by 352 is used for the package, although the
system has a potential resolution of 720 by 700 pixels [16]. PLOT uses
escape codes to generate the top or side view of the mobile base (including
the mock up module). A listing of this package, written in FORTRAN 77, is
included in Appendix 2. It is anticipated that this package can be
modified to run on the Evans and Sutherliand color graphics terminal driven
by a VAX 780.

The entire OMV module is written in FORTRAN 77, and all floating
point computations are carried out in double precision. The usual struc-
tured programming technique is used [14]. Modular design is faithfully

adhered to, so that subroutines can be easily updated or replaced. At



times, efficiency may be sacrificed for code clarity, thereby making the
code much easier to maintain and modify. During the design phase, flexibi-
ity is emphasized. Model parameters are inputted from disk files. Thus,
modifications on the flat floor system will not involve any changes to the
OMV source code. Appendix 3 shows the various data files used.
Explanations for the various quantities are included as part of the record
so that one can easily modify the configuration, initial condition§ and so
forth without having to refer to the source listing. A complete listing of
OMV is included in Appendix 4, and a hierarchal chart is shown in Figure

2-4,

2.6 TESTING AND RESULTS

Initial testing of the OMV software is conducted using an IBM
Personal Computer with 8087 arithmetic co-processor. The same source code
without the graphics option has been uploaded to the PDP 11/34 and VAX 750
at MSFC and executed successfully.

The nature of the model is such that the major source of error would
arise from the numerical solutions of the equations of motion. Thus, much
effort has been spent to ensure that the Adam-Bashforth method yields
accurate results. An error analysis of this method shows that the error is
of the order of hS where h is the step size. In the present work, the step
size is typically 0.01. This, coupled with the fact that all computations
are carried out in double precision, means that the expected truncation
error is of the order of 10-10 -- a figure that is too good to be true.

The following tests were conducted to verify that this method does
indeed give accurate solutions. The homogeneous case is first considered.
Physically, this corresponds to the situation where the operator leaves all

the controls in neutral so that




Figure 2-4. OMV Heirarchial Chart

p=—————— QUTPUT PLOT (Note 1)
¢ INTTPLL (Note 1)
frmmee.  QUITGM (Note 1)
= HNDCTL FUDGE
r—— DOTPRD
L s —
DCSINV
DMUL
S — MATCH
t———e  MOTION UPDQ

DETQ e———— SINCOS

e STORE
— INNIT
e SOLVE =
— F
e ANGFRE
OMVMDL e
e VECTOR
SvX (Note 2)
Note | : Hardware incompatible graphics package.

Note 2 : Vector Transformation Module. See Reference 1.



a=1[0,0,01T and w=7[0,0,01T

Thus, the equations of motion reduce to:

X = - 2w 2
2
Y = - w oY
. d 2
Z = 2w X + 3w 2Z

This set of equations can be solved numerically using the Adam-Bashforth
method. Further, if X1, X2, X3 and Vi, Vo, V3 are the initial conditionrs,

it can be shown that the analytical solutions are:

at - 4si , 1 - cosat)
() = Xy - (3at 945‘”Qt) v, - 6at - sinat) X -i--_a_____ Vs
X(t) = - (3 - 4cosqt) V1 - 5Q(I‘C05Qt) X3 - 2(sant) V3
Y(t) = ot sinat
(t) = (cosat) X, + (302 v,

-

—

cr

~—
[}

= -a(sinqt) X2 + (cosat) V2

I(t) = 2(1-cosnt)

sinat
Q

V1 + (4-3cosqt) X3 * 3

N

—

cr

~—
1]

2(sinqnt) vV, ¢ 3a(sinat) X5 + (cosut) Vs

Thus, the numerical solutions can be compared directly with the analytical
ones. Here, Q is the orbital velocity, and for a circular orbit, q can be

calculated:

@ = GM, / (R, + H)3



where G is the universal gravitation constant, Mg is the mass of the earth,
Ro is the mean earth radius and H is the altitude. Note that at higher

orbits, ¢ approaches 0 and the equations of motion approach

X -> 0
Y -> 0
7 -> 0

and better agreement between numerical and analytical results are expected
for high altitudes than lower orbits. A computer program called ADAM has
been developed that would, given a set of initial conditions, calculate
both the numerical and analytical solutions to the equations of motion.

The source listing of ADAM is shown in Appendix 5. In the present set of
tests, an altitude of 200 kilometers (@ = 0.00118 rad/sec) is used
throughout. This altitude represents the Towest design orbit of the
Orbital Maneuvering Vehicle. Table 2-3 shows a comparison between the ana-
lytical and numerical solutions at this altitude, using the initial con-

ditions:

X1 =0, Xp=X3=0

Vi = 0.05, Vo =V3 =0

The results shows that the two solutions agree to better than 3 x 10-8 in
60 minutes, or about 0.03 millimeters. This figure is well below the
expected accuracy of the flat floor simulation system. This suprisingly
small error comes from the fact that the angular velocity é is quite small.
When £ = 1.0 is used, (this angular frequency does not make sense physi-

cally, as it represents an orbit well below the earth's surface, but



T@me X (meters) Z (meters)
Minzzes Numerical Analytical Numerical Analytical
0 0.000000 0.000000 0.000000 0.000000
5 13.746736 13.746736 5.271240 5.271240
10 20.161917 20.161917 20.427114 20.427114
15 12.828963 12.828962 43,576117 43,576178
20 -12.952950 -12,952952 71.829442 71.829444
25 -59.582227 -59.582233 101.660919 101.660923
30 -126.855533 | -126.855544 129.347660 129.347664
35 -211.993176 | -211.993191 151.434377 151.434380
40 -309.986003 | -309.986022 165.164663 165.164664
45 -414,220544 | -414,220565 168.824984 168.824985
50 -517.304365 | -517.304388 161.958539 161.958536
S5 -611.988644 | -611.988666 145.422253 145,422248
60 -692.072815 | -692.072834 121.279843 121.279843
Note : X and Z are expressed in Local Vertical Frame.
Table 2-3. Comparison Between Analytical and Numerical Solutions




constitutes a valid situation mathematically), the errors propagate quite
fast as to render the comparison meaningless after 10 minutes.
A second test was carried out at the same altitude, using null ini-

tial conditions:

[}
o

X1 = X2 = X3

]
o

Vi =V = V3

The hand controller signals were chosen to yield a constant acceleration
along the X-axis in the LVF, that is a = [0.025,0,017, and the orientation
of the OMV is chosen to be aligned to the LVF at t = 0. The result after 4
seconds of simulation is shown in Table 2-4. A plot of the relevant dyna-
mic variables as a function of time is shown in Figure 2-5. The result
shows that the model behaves exactly as expected; namely that an accelera-
tion along the X-axis gives rise to a Z component, as dictated by orbital
mechanics. If we ignore the Z contribution for the time being, one can
estimate the value of X and X using Newton's laws (this is not an invalid
estimate as the time interval is quite short compared with the period of
rotation) to be X = 0.2 meters, and X = 0.1 meter/sec respectively. These
figures compare very favorably with the numerical results at t = 4 seconds.
A very interesting test was conducted in which the OMV is made to
execute a pure pitch motion. 1In this test, it is assumed that the OMV is

originally at rest, the initial conditions being:

"
(=]

X1
Vi

X3
V3

X2

1]
o

V2
r =p =y =0

where r, p, y represent the roll, pitch and yaw respectively. A pure pitch

motion would correspond to a rotation about the 2-axis. Mathematically,




L N

Z

T?me .X X Z
in in in in in
Seconds meters meters meters meters
.0 0.000000 0.000000 0.000000 0.000000
5 0.002940 0.012125 ~0.000001 0.000007
1.0 0.012128 0.024625 0.000009 0.000029
1.5 0.027565 0.037125 0.000032 0.000065
2.0 0.049253 0.049625 0.000077 0.000117
2.5 0.077190 0.062125 0.000152 0.000183
3.0 0.111377 0.074624 0.000263 0.000264
3.5 0.151814 0.087124 0.000418 0.000360
4.0 0.198501 0.099624 0.000625 0.000471
Initial conditions :
X1 = X9 = X3 = 0 and
Vi = Vp = V3 = 0
Note : All quantities are expressed in Local Vertical Frame.
Table 2-4. OMV Acceleration Along +X Direction
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r=y=0, and p=w2 =0

When the OMV is executed in this mode, the state vectors are fed into the
SVX module, with the result that the state vector is translated into a
sequence of commands CMD. This sequence of commands is to be transmitted
to the flat floor. Table 2-5 shows the relevant commands for the mobile
base. As verified by the graphics display, the mock up module mounted on
the mobile base executes a pure pitch at the same rate as the OMV, while
the mobile base has to translate along the +X direction. In addition, the
pivot point is progressively lowered as expected. This test shows that the
modules OMV and SVX are properly interfaced, and that correct results are
produced. The command strings as outputted by the system to the flat floor
is shown in Figure 2-6.

To further ascertain that the system is functioning properly, the
hand controller signals corresponding to a translation along l-axis and a
yaw is generated. The relevant commands to the flat floor system is shown
in Table 2-6. A pictorial representation of the mobile base and mock up is
as shown in Figure 2-7. Note that the path of the center of mass of the
mock up exactly duplicates that of the OMV.

In summary, various tests have shown that the OMV-SVX system func-
tions properly. By way of example, a pure yaw motion of the OMV demands
that the mobile base describes a circular path as shown in Figure 2-8.
There is just one area that needs further investigation, namely timing con-
siderations. This system must be able to complete all the computation
within 0.1 second -- a major cycle. When the system is uploaded to the PDP
11/34, it was discovered that the computer took more than 0.1 seconds to

complete one major cycle of computation. At this juncture, one can take



Time Pitch X VA

(Sec) (Rad) (meters) (meters)
0 0.0000 5.0000 2.4384
4 0.0698 5.0010 2.3852
8 0.1396 5.0074 2.3324
12 0.2094 5.0167 2.2800
16 0.2793 5.0295 2.2284
20 0.3491 5.0460 2.1778
24 0.4189 5.0659 2.1285

Note : All measurements are in flat floor coordinates.

Please see Appendix 1.

Table 2-5.

OMV--Pure Pitch Motion at 0.017453 rad/sec
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Time X Y Z Yaw

(Sec) (meters)| (meters)| (meters) (rad)
0 0.0000 | 11,6680 2.4384 0.0000
4 0.2752 | 11,2418 2.4390 0.3470
8 1.0709 | 11.0039 2.4433 0.6940
12 2.2919 { 11.1199 2.4545 1.0410
16 3.7925 | 11,7135 2.4750 1.3880
20 5.3934 | 12,8512 2.5062 1.7350
24 6.9035 | 14,5350 2.5480 2.0820

Table 2-6. Motion of the Mobile Base Under Constant Acceleration
of (0.025,0,0)T and Constant Yaw at 0.08675 rad/sec
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one of the following three corrective actions:

a) Use a faster host computer (VAX 780)

b) Use single precision computation, or

¢) Increase the step size in the numerical methods.
0f the three choices, the first method is clearly desirable, but until the
VAX is installed, one must explore the remaining alternatives. Table 2-7
shows a time comparison between single and double precision arithmetic when
the OMV is run until identical parameters on the PDP 11/34 computer. The
result shows little improvement in execution time. This is not surprising
since the computer is equipped with hardware floating point capability.
The only remaining recourse is to increase the step size, thereby reducing
the number of steps (and hence the number of iterations). It is discovered
that the numerical solution to the equations of motion [13] took most of
the computation time. Table 2-8 shows a similar time test for various
steps N and retaining double precision arithmetic after the code has been
suitably optimized. The data show that a step size of h = 0.025 seconds (N
= 4) satisfies the time requirement. The price to be paid is that the
error associated with the numerical process may increase. Table 2-9 shows
a comparison test for N = 10 and N = 4 using the program ADAM. The result
suggests that there is an optimum N somewhere between 4 and 10 in which the
error is a minimum, but this question is not pursued any further. The
result also shows that the error does not increase substantially over the
same period of 60 minutes whether we use N = 10 or N = 4, Using N = 4, the
deviation from the analytical solution is still much less than the accuracy
of the flat floor system.

The series of tests conducted, some of which are not reported here,

shows that the simplified mathematical of the Orbital Maneuvering Vehicle



No of Average execution time per major cycle
Steps Single Precision Double Precision

4 0.077 0.084

5 0.090 0.099

6 0.103 0.113

7 0.117 0.128

8 0.130 0.143

9 0.144 0.158

10 0.157 0.173

Table 2-7. OMV Time Test




N Execution time (Sec)
4 0.068
5 0.079
6 0.090
7 0.100
8 0.111
9 0.122
10 0.132

Table 2-8. Optimized OMV Execution Times Per Major Cycle
as a Function of Number of Steps N



Time Solution
in Analytic Numeric
Minutes N = 10 N = 4
0 0.000000 0.000000 0.000000
5 13.746736 13.746736 13.746736
10 20.161917 20.161917 20.161917
15 12.828962 12.828963 12.828961
20 ~12.,952953 -12.952950 -12.952956
25 ~-59,582233 -59.582227 -59.582237
30 ~-126.855544 -126.855533 -126.855551
35 -211.993191 -211.993176 -211.993200
40 -309.986022 -309.986003 -309.986034
45 -414,220565 -414,220544 -414,220579
50 -517.304388 -517.304365 -517.304403
S5 ~611.988666 -611.988644 -611.988681
60 -692.072834 -692.072815 -692.072847

Table 2-9.

Comparison Test Between N = 4 and N = 10 Steps




is functioning properly, and that it interfaces properly with the State
Vector Transformation module SVX to produce correct sequences of commands
to the flat floor. By choosing a coarser step in the numerical integration
process, OMV is able to complete all the necessary computation within a

major cycle, without compromising on the accuracy.



Chapter 3
STATE VECTOR TRANSFORMATION MODULE (SVX)

3.1 INTRODUCTION

The State Vector Transformation Module (SVX) is an interface between
the OMV simulation model and the mobile base (TOM-B) of the flat floor
simulation system. We can imagine the OMV simulation to be a free flying
vehicle in space under human operator control, and at any particular
instant, its state can be summarized as a fourteen-component vector called
the state vector S. SVX takes this state vector as an input and generates
an appropriate string of commands that is transmitted to TOM-B with the
stipulation that if TOM-B executes this command string exactly, then the
mock-up module mounted on TOM-B will exactly replicate the motion of the
OMV as perceived by the operator.

References [14,17] are reports that pertain to the various aspects of
the OMV. From these reports, the various components that make up the state

vector can be deduced and are presented below:

Component Symbol Meaning
1 X Position of the target vehicle relative
2 Y to the OMV in local vertical frame LVF
3 Z
4 Vy Relative velocity of the chase vehicle
5 Vy in LVF
6 Vg
7 Lx Angular momentum vector in LVF
8 Ly
9 Ly

10 a1 Attitude quaternions in body frame



11 a2

12 q3
13 g4
14 m Mass of OMV

It is often more convenient to consider the state vector to be made up of
the following four vectors: X = [X,Y,ZIT, V = [Vx,Vy,Vz]T, L = [Ly,Ly,L;]
and the unit quaternion q = [q1,92,93,9417.

As mentioned earlier, the required command string must be derived
from this state vector, and is transmitted to TOM-B as seven 16-bit words.
The last word can either be a zero or a one, which is interpreted by the
TOM-B Executive as rate or position control respectively. A brief explana-

tion of the command string is shown below:

Component Position Control Rate Control Coord. System
Symbol Meaning Symbol Meaning
1 y yaw of TOM-B } yaw rate body frame
2 X position of Vg velocity of LVF
3 Y TOM-B Vy TOM-B
4 z pos of pivot Vg vel of pivot
5 p pitch angle p pitch rate body frame
r roll angle r roll rate
7 1 pos. control 0 rate control

Before the detailed analysis is presented, it is necessary to define the

various coordinate systems used.

3.2 COORDINATE SYSTEMS
Several coordinate systems are used in this software module.
Specifically, motion of the OMV is described in Local Vertical Frame (LVF)

while the orientation of the OMV is described in body frame. Similarly,



the position and velocity of the mobile base TOM-B is described in floor
coordinates while the orientation of the mock-up module and TOM-B are

described by the respective body frames.

A. The Local Vertical Frame (LVF)

Imagine a circular orbit that is inclined at an angle i with respect
to the equatorial plane. A Local Vertical Frame is a non-stationary frame
that has its origin at a point on this orbit such that:

(i) Its Zy axis is directed away from the earth's center,

(ii) 1Its X_ axis is directed tangential to the orbit and is perpen-
dicular to its 7| axis, and
(iii) The Y_ axis is directed parallel to the angular momentum vector,
as shown in Figure 3.1.
A subscript L will be used to indicated quantities defined in this coor-

dinate system.

B. The Floor Coordinate (F)

The floor coordinates has its origin at one corner of the flat floor
as shown in Figure 3.2. Its Xf axis is directed along the width of the
floor, while the Yfp axis is directed along the length of the floor.

Naturally, Zf axis is directed vertically up.

C. The TOM-B Frame (B)

This coordinate system is fixed with respect to the mobile base, and
has its origin at the center of mass of the mobile base. Its Xg axis is
directed towards the front of TOM-B, while its Zg axis is parallel to the
Zr axis of the flat floor. A third axis Yg is chosen so as to form an
orthogonal right-handed coordinate system, a top view of which is shown in

Figure 3.3.
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D. The Mockup Module Body Frame (M)

It assume that the mockup module resembles the OMV in shape (that is,
not unlike a pancake). The origin of its body frame coincides with its
center of mass, and the XM axis is directed towards the front of the
module. Initially, at the start of the simulation, the Zy axis 1is chosen
to be parallel to Zp, and the appropriate orthogonal axis is chosen as its

YM axis, as indicated in Figure 3.4.

3.3 ANALYSIS

It is obvious that the position and attitude from the state vector
are relative quantities. Thus, initial conditions at thé start of the
simulation must be known. Figures 3.5 and 3.6 shows the initial state of
the mobile base and mockup module at the start of the simulation. The
quantities a, ¢, 1, h and o can be obtained from measurement.

A necessary initial condition is that the operator must leave the
hand controllers in the neutral position for at least one second so that
the initial position of the OMV [X4,Y,,ZolT can be obtained. It is also
assumed that the initial orientations of both the OMV and mock-up module
are set in their home position. If the notation r, p, and y is used to

indicate the roll, pitch, and yaw of both the OMV and the mock-up, then,
C roMv, Pomv, yomv 1T = rM, PM, M 1T =[ 0, 0, 0 1T

It is obvious that the corresponding axes of the coordinate frames M, B and
F are all parallel at this point in time. At any later time, the position

of the OMV can be calculated from the state vector:




Figure 3-4. Mock-Up Module Body Frame (B)
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Here, S1, Sp, and S3 are the first three components of the state vector.
This position is measured relative to the starting point in the beginning
of the simulation, and can be transformed to the position of the mockup

module in floor coordinates using the equation:

[_XM—' FXL— ¢+ 1 - XO-.

M = YL + a - Yq Y_I]
JAY 4 h - Z,

I § L _ d

Equation [I] governs the transformation of the position vector of the OMV
in LVF to a position vector for the mockup module in f]dor coordinates,
based on the initial conditions and the first three components of the state
vector. Given that the instantaneous orientation of the module is [ryM, PM,
rm]T as shown in Figure 3-7 and 3-8 the position of TOM-B [Xp, Yg, Zp1T in

floor coordinates is given by:

Xp Xy - (c+ lcos(p))cos(y)
Yp = Yy - (c + lcos(p)}sin(y)
ZF 3

Note that Zf is the height of the center of mass of TOM-B from the floor (a
constant quantity), and is not of interest here. Instead, the quantity of
interest is Z, which is the height of the pivot point from the floor as

shown in Figure 3.6, and

Z =1y - 1sin(p)

It follows that the velocity of TOM-B and the pivot point is given by




Figure 3-7. Position and Yaw of TOM-B
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Xp Xy + {c + lcos(p)lsin(p)y + Ilsin(p)cos(y)p

=3
)
[

Yy - {c + lcos(p))cos(p)y + 1lsin(p)sin(y)p | [IV]

Z Zy - lcos(p)p

The above transformations take care of the position and velocity quan-
tities.

The quaternions q1, 92, 93, q4 from the state vector specifies the
OMV's attitude in body frame, as discussed in References [18,19]. At any

instant, its orientation is given by [10]:

[ Ty Py ¥ ]T = a[oxooycoz]T
where
a = 2 cos'l(qé)
[ Oy» Oy, O, 1T = (iqp + jag + ka3) / (q + ap + Q3)0'S

while their rates are wg = [w], w2, w317 which can be calculated in the

following manner:

Since the angular momentum vector L = [Ly, Ly, L,1T from the state
vector is expressed in LVF, it is necessary to transform it to body frame

using the equation:
L = AL

here A is the direction cosine matrix which can be constructed from the

attitude quaternions g1, 42, 43, and a4




(44 +q1 - g2 - 93 2(4192 + q3d4)  2(q1q3 - 92q4) |

A =] 2(q192 - q3q4) g4 - 91 + 42 - 93 2(92q3 + 4344)

2(q1q93 + q2q4) 2(q2q3 - 9164) q4 - 91 - g2 + 43
L d

Knowing the moment of inertia tensor I, one can calculate the angular rates

WB [w1, wo, W3]T

I-lig =1-1(AL)

Thus, one has all the needed information from the state vector to yield the

necessary position or rate control commands.

3.4 ALGORITHM

The algorithm for SVX makes use of all the transformations described
in the above section. Essentially, the algorithm uses the state vector and
depending on the value of MODE, generates the appropriate command string
CMDRAW.

Case 1 MODE <> 0 (position control)

In this case, both orientation and position of the OMV are updated.
A transformation is made to yield the position of the center of mass of
TOM-B using equation [I] through [IIIJ. The orientation of the mock-up
module is obtained using equation [VI]. Using the previous notation, a

seven element vector
Ly, XB» Yg, Z, p, T, ]]T

is generated. Each element of this vector is suitably and round off to the
nearest integer (16-bit word) and is the sole output of the SVX module.

Rate information is not of interest when the system is in position control,



and is therefore not transmitted. Throughout this module, the scale fac-
tors for all angular and displacement quantities are 104 and 103 respec-
tively.

Case 2 MODE <> 0 (rate control)

In this rate control mode, it is still necessary to update the orien-
tation (equation [VI] although it is no longer necessary to update the
position of the OMV. The velocity of TOM-B in floor coordinates is deter-
mined from equation [IV] while the rates for roll, pitch and yaw are deter-
mined using equations [VII] through [X]. The seven 16-bit word command

string is:
Ly, X8, Y8, Z, p, r, 017

As before, each component of this vector is similarly scaled and rounded
before returning.
Case 3 MODE <> 0 and MODE < 1

In this case, MODE is set to 1, and position control is assumed.

3.5 IMPLEMENTATION

This algorithm is implemented as a subroutine named SVX (S, CMDRAW,
MODE) where the three items on the parameter list are the state vector out-
put command string and control mode respectively.

The subroutine is implemented in FORTRAN 77, and the usual
programming practices are adhered to. Most of the major steps are either
properly documented in the form of COMMENT statements or implemented as
subprograms, following a modular design approach. Whenever possible,
structured codes are used unless severe degradation of execution speed may

result.




SVX is compiled and tested using a IBM Personal Computer, and the
source code, on completion of the testing, is uploaded to the PDP 11/34
computer at MSFC. Appendix 6 shows a complete listing of this module. A
more detailed description of the testing procedure will be presented later
in this section.

A local counter (COUNT) is initialized at load time, and updated
during execution to enable SVX to determine the initial state on start up.
During this period, other tasks are carried out as an integral part of the
initialization process. This includes reading a file (SVXINT.DAT) for the
values of ¢, 1, a, h and o, as well as the inverse of the moment of inertia
tensor I-1,

This module assumes that the operator will, at start up, leave the
hand controller at a neutral position for at least a second. During this

interval, the initial state of the OMV is recorded, and the vector E where

m
[{]

[E1, €2, E31T
[c+1-Xg, a-VYg, h-241T

is calculated. The roll, pitch and yaw of both the OMV and the mock-up

module are initialized to zero during this process by invoking subroutine
ZERO.

Subsequent calls to SVX causes a seven 16-bit command string in an
INTEGER array called CMDRAW to be produced. Computation here depends on
the value of MODE.

When MODE is non-zero, position control is assumed. SVX invokes
subroutines QTRPY and UPDPOS to calculate the desired orientation and posi-
tion of the OMV. A transformation is then made to determine the required

position (of the mobile base TOM-B in floor coordinates) and orientation



(of the mockup module in body frame). Since the value of MODE cannot be
changed in the course of a simulation, no rate information is calculated or
retained.

When MODE is zero, rate control is used. First, QTRPY is called to
calculate the orientation of the OMV; its position is not computed because
it is not of interest while in the rate control mode. The direction cosine
matrix A is formed by invoking subroutine DIRCOS, and a simple matrix
multiplication transforms the angular momentum to body frame. Finally, the
velocity of the OMV (from the state vector) is suitably transformed to
yield the velocity of TOM-B in floor coordinates, and the appropriate com-
mand string assembled.

When MODE is neither zero nor one, it is set to one and defaults to
position control. One frequently used subroutine in both modes is DECOMP
which takes the state vector S and decomposes it to form the vectors X, V,
L and q which correspond to the displacement, velocity, angular momentum
and the unit quaternion vectors respectively. Throughout this module, no
attempt is ever made to ensure that the magnitude of q is unity.

To ensure that SVX generates the correct command string, a series of
tests were conducted using the IBM PC. First, a simple State Vector Editor
is written. This editor allows one to create and edit, interactively,
state vectors which are placed in sequence in a disk file. Next, a simple
main program is written and linked to the SVX module. The main program
consists of a driver loop that reads each state vector from the disk file
and invokes SVX. The command string outputted by SVX is sent to a printer
and the process is repeated until the file of state vectors is exhausted.
This simple arrangement allows one to verify the correctness of SVX without

disturbing it.



Since it is difficult, if not impossible, to represent the results
graphically in three dimensions, state vectors are chosen such that one can
easily displays the results in two dimensions. B8y way of example, a

sequence of 60 state vectors of the form:
o,o0,0, 0,0,0, 0,0,0, 0,0,sin(7.5),cos(7.5), 150017

is generated. This set of state vectors simulates 50 seconds of run time
in which position control is used. The meaning of this state vector is
that the OMV is to remain stationary, but executes a yaw at a rate of 15°
per major cycle (0.1 second). Here, we have assumed that the OMV is a disk
shaped object having a uniform mass distribution and a constant mass of
1500 pounds. Note that in case of position control, the angular momentum
vector is inconsequential, so a null vector is used. These figures may not
be very realistic, but they are adequate for testing the SVX module.

Figure 3-9 shows the result of a portion of the output command string. In
this and subsequent figures, a circle or dot indicates that the position of
the center of mass of TOM-B in floor coordinates, while an attached arrow
shows its yaw. This figure depicts that TOM-B moves in a circular path and
its yaw is changing at a rate of 15° per major cycle. It is noted that the
radius of the circular path is equal to the distance between the centers of
mass of TOM-B and the mock-up module. Thus, the mock-up module would be
spinning about its Zy axis at the same rate, exactly as expected.

When the state vectors are changed to
[0.5,0,0, 0,0,0, 0,0,0 0,0,sin(7.5),cos(7.5), 150017

in position control, the path of TOM-B is shown in Figure 3-10. In this

figure, TOM-B attempts to move in a circular path with a net displacement
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of 0.5 feet per major cycle. It is easy to conclude that the mock-up
module would be rotating about its ZM axis and translate along the XM axis

simultaneously, as demanded by this state vector.

3.6 RESULTS

Other similar tests have been conducted. For example, the state vec-
tor in the beginning of this section has been input for rate control, and
the result is plotted in Figure 3-11. This and simular results have
demonstrated that the module SVX is functioning properly and that correct
command strings are obtained. One must remember that the outputs of this
module are commands to TOM-B, indicating the desired position, (or veloci-
ty) and attitude (or angular rates). The proper interpretation, and sub-
sequent execution, of these commands are performed by the TOM-B Executive,

and is outside the scope of the SVX module.
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Chapter 4

MOBILITY BASE ON-BOARD CONTROL LOGIC
TOM-8

4.1 INTRODUCTION

TOM-B is the control software that drives the mobility baée. A
description of the mobility base has been given in Chapter 1, and will not
be repeated here. »

TOM-B is designed to perform position or rate control over the mobi-
lity base. During development and testing, position control was used. The
command structure coming from six could consist of a sequence of 6 numbers,
each of which specifies the desired position and orientation of the vehicle
when the command is executed but because of communication bandwidth, the
command string consists of a positional increment, which must be added to
the current position to yield the desired position. Further, the most
efficient mode of transmission is in integer format and this format is
adopted here. It is understood that for positional quantities (such as X,
Y, and Z) the unit used is 0.001 inch, while for the remaining quantities
(angular), a unit of 0.1 degree is used. By way of example, the command
string:

10 0 20 0 0 O
is interpreted such that TOM-B move along X axis 0.0l inches from the
current position, and rotate by 2 degrees about its Z axis. A1l other axes
remain unchanged. Symbolic names are used to represent each of these quan-
tities in the command string, the command transmitted to TOM-B is of the
form:
CMD-X, CMD-Y, CMD-THETA, CMD-Z, CMD-P, CMD-R

Essentially, based on the desire position/orientation and the current



position/orientation, one can calculate the required impulses fy and fy.
This is the required impulse that moves TOM-B from the present position to
the desired position, and is expressed most conveniently in floor coor-
dinates. This impulse is translated into the corresponding impulses FX and
FY, which are impulses that must be exerted by TOM-B. This is necessary
because at any particular moment, the body-centered coordinate system
defined with respect to TOM-B may not be lined up with the floor coor-
dinates. Once FX and FY are known, the individual impulses FX1, FX2, FY1,
and FY2 to be exerted by the appropriate thrusters are determined. From
these impulses, one can calculate the firing times of these thrusters,
since they cannot be throttled. The firing times are then suitably scaled,
and the appropriate numbers loaded into the corresponding down counter. A
control signal is then sent to fire the thrusters, as shown in Figure 4-1.

Figure 4-2 shows the hypothetical position and orientation of TOM-B
when the position and orientation of TOM-B is given by the vector (x,y, )
determined from the navigation system. Here 1is the orientation of the
vehicle. The desired position and orientation is dictated by the command
string (XcMps YcMDs CMp) such that the vehicle will be at this position at
the end of the current major cycle. The required impulse to accomplish

this is given by:

fx

mag(X,XcMps Vox)

fy = mag(Y,Ycmp,Voy)

where fy, fy are the required impulses along X and Y directions in floor
coordinates. V is the velocity of the vehicle, also expressed in floor

coordinates. It is noted that Voy, and Voy are obtained from the accelero-

meter readings V°y and V°y using the transformation:
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and the function g, is given by:

g(X,XcMpsVox) = T - 1A if Azis non-negative
9(X,XcMpsVox) = =Vox * (Vox + 2a(XcMp - X))1/2 otherwise
a
where
2= T2 - 20XeMp - X - VoxT) .

a

Here, a is the magnitude of the acceleration produced when one pair of
thrusters is fired simultaneously in the same direction, and is approxi-.
mately equal to 0.1 ft/sec?. T = 0.1 is the major period. Note that the
impulses fy and fy are defined relative to the floor coordinates. To
determine the actual impulses Fy, Fy that TOM-B must exert to produce the

same displacement, we use the transformation:

-sirg coseg||fy

-
>
1]

cos® sin® fy

where @ is the orientation of the vehicle as determined by the navigation

system.



4.2 CONTROL LAW

Once the impulses Fy and Fy are known, then the individual impulses
Fx1s Fx2s Fyl, and Fyp that each thruster must produce can be calculated
{13]. The notation as shown in Figure 4-3. Wherever a negative quantity
is encountered, the directly opposite thruster will be used. Obviously,

one must have the relation:

Fx = Fx1 + Fx2

Fy = Fy1 *+ Fy2

Note that not only must the impulses produce the required transiational

displacement, but also must produce the necessary angular displacement. We

define the required torque Ty by the relation:

To = 23,,%CMD =8 ) / T2

where T is the major period and Jz; is the principle moment of inertia
about Z-axis of TOM-B [5]. It is prudent to consider the following two
cases.

Case 1. Fy < Fy

In this case:

Fyt=Fy /247147 (2L

Fy2 = Fy - Fy1
I[f one defines a quantity Fy to be

F)( = (TO + (Fyz - Fyl)Ly) / (ZLX)

then
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Figure 4-3. TOM-B Thruster Impulses



Fxl = FX / 2 + Fx

Fx2 = Fx - Fx1

Case 2. Fy > Fy

In this case,

FXl = Fx / 2+ To / (2Lx)

Fx2 = Fx - Fx1
If one defines another quantity T’y such that:
T79 = To + (Fx2 - Fxl)lx
then,

Fyl = Fy / 2+ T7% / (2Ly)
Fy2 = Fy - Fy1
These impulses must be converted into the corresponding firing times Tyj,

Tx2, Tyl, and Tyg, respectively because the thrusters are not throttleable.

These can be accomplished using the formula:

ij ij / ma

Tyj ij / ma

for j = 1, 2. Here, ma (mass times acceleration) is the thrust developed

by each thruster. Recall that a negative Tyj means that opposite thrusters

will be used.

4.3 TOM-B PROCESSING LOGIC--ALGORITHM
In this section, the high level control logic is discussed fully.

The name of the software is TOMC. This is to differentiate between the



hardware TOM-B8. The code is written in FORTRAN and MACRO-II (Appendix 5).

A top down design is used throughout.

The main program of the control logic is shown in Figure 4-4, The

initialization procedure consists of the following steps:

a)

A routine is used to set up a schedule to interrupt the system

ten times every second. The interrupt service routine must:

1) Interrupt the incoming command string,

2) Determine the present position and orientation of TOM-B using
the navigation system,

3) Get the buffers containing the accelerometer and gyro
readings. Note that the position for the other three axes
(Z, pitch and roll) will also be determined by this service

routine.

Thus, updated information is always available in any given major

cycle.

b)

c)

Static quantities (such as physical dimensions of the vehicle
which are not expected to change) are initialized.

A data file is opened and accessed so that dynamic quantities
such as mass of fuel, number of thruster pairs per side, thrust
that will be developed by each thruster, calibration data, scale
factors, etc., are initialized. This is an efficient design, as
the system may be subject to further modifications, or the
experimental condition may change (e.g., a different module may
be mounted, causing a change in the mass of the vehicle). Under
this circumstance, the data file is modified offline, without

having to change and recompile the entire software.

After the initialization phase, the balance of the main program
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involves intercepting the command string once every 0.1 second, and , exe-
cuting this command string until a command to stop is encountered. When
this happens, preliminary shutdown procedures (such as turning off all
thrusters) is carried off before the final system shutdown.

The processing of a major cycle is carried out in a procedure called
MAJOR, as shown in Figure 4-5. On entering this procedure, appropriate
memory locations are accessed and the current position and orientation of
TOM-B are determined. The command string is examined first to see if any
thrusters must be activated. A separate routine called THRUSTER performs
the necessary thruster logic. When this subtask is completed, the balance
of the command string is examined to see if it is necessary to move any of
the stepping motors which control the remaining axes (Z, pitch and roll).
The procedure MOTOR performs the necessary stepping motor contral logic. A
waiting procedure is implemented to place the processor in a dormant state
until the next command string is intercepted. A higher priority is
assigned to thruster logic. This is deliberately done because of the
nature of the thruster hardware logic. An appropriate number is placed in
the corresponding down counter and a control signal is issued to fire a
thruster. The hardware fires the thruster and decrements the counter until
its contents are zero, after which the thruster shuts down. During this
interval the processor performs other tasks, and need not wait until the
firing cycle is completed. For this reason alone, thruster logic is pro-

cessed first is procedure MAJOR.

4.4 TESTING AND VERIFICATION
Verification of TOM-B was accomplished by a series of measurements

and tests conducting using the mobility base. These series of measurements
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were lengthy and involved interaction with the hardware. Although handling
and adjusting hardware components were outside the scope of the contract,
UAH has provided personnel to perform these minor operations, under the
supervision of MSFC personnel, to expedite the testing procedure. Because
of the frequent hardware modification/upgrade and because of concurrent
time needed by ESSEX for their measurements, it was not possible for UAH to
have a reasonable block of uninterupted machine time for testing purposes.
Frequently, it is necessary to schedule our tests between ESSEX'Ss runs.
More frequently, our tests have to be suspended because of hardware una-
vailability or failures.

A series of tests were conducted initially to ensure that the TOM-B
initialization procedure was corrected. This was done by modifying the
code to display all critical parameters such as scale factors/orbits of
the gyro end accelerometers, firing table, etc. The interrupt routines
were also thoroughly tested on-line. The result was that several parame-
ters have to be tuned, but this was easily accomplished since all critical
parameters were placed in data files, and as such they are easy to modify
without disturbing the code.

Several of the components on the mobility base must be calibrated in
order to obtain some of the parameters. These include the gyro and the
accelerometers. For proper operation, the precise scale factor and offsets
of these components must be obtained in order to correlate the outputs of
these sensors to actual vehicle parameter (position, speed and orientation
in the appropriate units). Figure 4-6 shows the gyro/accelerometer package
[20]. An optimal place to mount these packages would be at the e.g. of the
mobility base. This was accomplished mostly by trial and error method, and

special software was developed for this purpose.
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The gyroscope and the accelerometer have been bench tested, but our
runs showed that an on-vehicle calibration is necessary. The gyroscope was
calibrated in the conventional manner. A seperate calibration progress
called ACE was developed to permit date acquisition and analysis. The pro-
cedure developed is as follows:

a) Allow the system to warm up to operating temperature.

b) A1l air handles to the facilities have been disabled so that
drafts would not cause any extraneous motion. This turned out to
be an important consideration, especially when a full scale OMV
mockup was mounted on the mobility base.

¢) ACE was commanded to fire an appropriate set of thrusts, causing
the mobility base to execute a pure rotational motion about its
Z-axis. The firing time was recorded.

d) The angular displacement in radians during the thruster firing
was recorded.

e) When the thrusters ceased firing, the angular displacement and
time required until the mobility base ceased rotation wére also

needed.

From these data, it is possible to deduce the kinetic coefficient of
rotational friction (which turned out to be quite small) and the proper
scale factor (and offset) of the gyroscope. Thus, one can correlate the
gyro output to angular displacement. Figure 4-7 shows one such set of
calibration data.

Similar procedures were used to calibrate the two accelerometers
mounted along the X and Y axis of the mobility base respectively. In this
instance, however, the appropriate thrusters were selected to produce pure

translation along a single axis instead. Several interesting phenomenon
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were observed:

a)

b)

¢)

The e.g. does not line along the symmetrical axis of the vehicle.
It was necessary to counter-balance the mobility base with lead
bricks in order to obtain translational motion without a rota-
tional component.

The kinetic coefficient of friction was quite large. The test
procedure was to enable the thrusters for two seconds, measure
the displacement dj, after which time the mobility base was
permitted to coast to a stop. The displacement d2 and time t
were recorded. In 60% of the the trials, d2 was no greater than
di.

The floor is not flat. With the air handles off, there was no
significant air current in the facility. When the mobility base
was put in certain areas of the floor, it had a tendency to drift
in a consistent direction, but the drift rate although observable

is very small.

Figure 4-8 shows the a typical calibration curve of one of the acce-

lerometers. Both accelerometers behave quite identically so that this

figure is quite typical. Immediately several problems are evident.

a)

b)

The signal to noise ratio is unacceptable, as can be estimated
from this diagram. Remember time t = 0 was the time when the
thrusters commenced firing.

A slope change was always observed approximately % seconds after
time t = 0. This change of slope represents the fact that the
thrust level drops after % seconds of firing. This is further
substantiated by a change in the pitch and is detectable by

hearing. This drop in level is an indication that the phlenum is
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not able to supply air at the designed rates to the thrusters.
This could be a result of an engineering design change in which
additional thrusters have been added to the phienum.

c) The data shows a lot of scattering. This is due to the excessive
vibrations transmitted to the accelerometer when the thrusters
are enabled.

The combination of poor signal to noise ratio, a drop in thrust level
after 0.5 seconds and noise means that at best, one may extract marginal
rate data from the accelerometer outputs, and would entail the use of
various smoothing, fitting and integration techniques. Thus, attempting to
obtain position data by further integration would be counter productive.
These observed problems, as well as a recommendation for a independent
position feedback subsystem, was reported to MSFC.

It is at this point in time that the contractual period was up, and

the facilities was scheduled to shut down for major hardware modification.

4.5  RESULTS

Although we were not able to complete testing the software, several
important tasks have been accomplished. First, attitude control using gyro
output was completed. During some tests, we were able to point the mobi-
lity base in any desired direction and maintaining this direction. This
indicated that the software is exercising positive control for this axis.
Since the accelerometer data are processed in the same fashion, all that
would be needed to close the loop was to implant a position feed back‘sub-
system. This was completed in January of this year. Mr. Ralph Kissel of
MSFC wrote the necessary software to control this sensor as well as the

analysis logic to process the data. These models were integrated to TOM-B



and the system tested. Two methodologies were used to obtain the rate
data. The first was to use the accelerometer output, while the second
method was to compute the rate by computing the time derivatives of the
position data.

After integrating the position feed back system, TOM-B works as
expected. In a test run, the mobility base was instructed to translate
along its x-axis by 5 cm, execute yaw of 30° and then hold that position
and orientation. The mobility base did just that, indicating that the
software does indeed exercise closed-loop control over the mobility base.
One disturbing observation is that to execute this maneuver, most of the
thrusters are firing, an indication that further optimization of the
control logic may be needed. The complete listing of TOM-B is given in

Appendix 7.
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Appendix 1.
OMV Translational Equations Of Motion

Consider a target vehicle orbiting the earth with an angular velocity w
and an orbit radius of R,. We can define a local vertical frame (LVF) at the

center of gravity of this vehicle as shown in the figure below :

XL

C: Chase vehicle
T: Target vehicle

ilere, XL, YL and ZL are the three orthogonal axes of the LVF., We can imagine
that the center of the earth may be considered as the originof the inertial
coordinate frame. We can chose the axes of this coordinate system as shown. In
particular, YE is parallel to Y;. We shall use the subscript L to denote those
quantities that are expressed in the LVF, while the subscript E shall be used
for those quantities expressed in the inertial frame. The point C in the

above figure represents the center of mass of the chase vehicle (OMV)



The equation of motion of the chase vehicle is easily deduced from New-

ton's second law, namely,
MR = F, + F (1)

This equation is written in the inertial frame. Here, M. is the mass of the
chase vehicle, Fg is the gravitational force exerted on the vehicle by the
earth, and F. is the control force exerted on the vehicle from the on-board
thrusters and jets. The objective of this exercise is to derive the equation
of motion in terms of r and its time derivatives, Namely, we wish to express
the motion of the chase vehicle (OMV) in local vertical frame., This choice
turns out to be very convenient for docking maneuvers,
From the above figure, it is obvious that
R = R + I'E (2)

(o]

it follows that

R = R, + T (3)

Since the LVF is a rotating frame, we can use the operator :
{ d/dt Jg = (d/dt + wx ]
Applying this operator to r twice, we have

l:’E = I"L + WX I'L

and

I'e

d/dt (EL + w X rL) + WX (iL + W X rL)

= ¥L + WX iL + wx fL + wx (wx rL)

;L + 2wxr, + wx(wxr) (4)



From equations (3) and (4), we have :

.R. = .R.O + .!:r'

ﬁo + ;L + 2w x }L + wx (wx rL)

Furthermore, for a circular orbit,

therefore,
R = -w2Ro + ;L + 2w x iL + wx (wxrp) (5)

It is clear at this point that the equations of motion (1) can be rewritten in
terms of ry and R, and their time derivatives. Thus the subscript will be-

dropped from here on. Recall that

R = R, + r
RZ = (Ry, + 1) . (R, + r)
= Rg + 2 o+ 2R,.r
= RZ + 2R,.r
= RZ (1 + 2(R,.r) /R )
so that R3 = R2(1 + 2(R,.r) / RZ)73/2
T RJ{1 - 3(R,.r) /RZ)
Thus, F, = -(GigMc/R) R
= —(GMM/RS ) (R, + 1) (1 - 3(Ry.r) / R2)
= -w2 (R, + r) (1 - 3(R,.r) / RZ)
¥ w2, (R, + r - 3(R,.r/R2 )R, (6)

since for a circular orbit, Wl = GMe/Rg. Substituting equations (5) and (6)




into (1), we have :

MRy + ¥+ 2w x E+wx (wx ) =F-Mw2(R) + r - 3(R,.r)/RZ )
I{ we define A = F. / M.+ then we have :
-w2RO +T +2wxr+wx (wxr) = A - w2Ro - wlr 4+ 3w2(Ro.r/Rg)Ro

which, after re-arranging, gives :
T = A - 2wxr - wlr - wx (wxr) + 3w2(R°.r/Rg)Ro (7N

Now, we shall state r, R, and w in cartesian coordinates. It is explicitly
assumed that the unit vectors i, j and k are directed along XL' Y and ;, axes

respectively, Thus,

r = [X, Y, 27T

R, = [0, 0, RyIT

v = [0, w 0]T and
T

A = (A Ay, 4]

and it can easily be shown that :

2wxr

[ 22, 0, -2wX]T
[-w?X, 0, -wéz]T

wx (wxr)

[ o, o0, 3wz)T and

3w(R,.r/R2)R,
2

wer [ w2X, w2Y, w22]T

and substituting into equation (7) yields

(X, ¥, 21T = [ -2wz, 0, 2¢X]T + [ w&, o0, w2z]T
s [ -w2x, -wY, w2217 &+ [ o, o, 3w?z)T

L S W WY b



or

X = A, - 2w
Y = Ay - w2Y (8)
7 = A, + 22X+ %Z

Fquation (8) is the equation of motion of the chase vehicle relative to the

target vehicle in local vertical frame.
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$PAGESIZE: 56
STITLE: '« O0OMV PLOT >>»'

1N

Program : OMVPLOT

Pt
C O W~ UV~ WR =

COO0OO0 OOO(')OOOOOOOO(’)OOOOOOOOOCOCOOOOOOOOOOOOOGO

by
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
bb
45
46
47
48
49

Dr. W. Teoh

UAH 1984

This is a graphical package that accepts a command string
and uses this information to generate and display the
position and orientation of TOM B and the attached mock-
up module in two dimensions. One can choose to display
either the top or side view of the system.

This package is developed in FORTRAN 77 to run on an IBM
PC with at least 128K of RAM, and fitted with a TECMAR
CRAPHICS MASTER board. An IBM Monochrome monitor is used
for the actual display. The resolution in this work is
chosen to be 640 x 350.

SUBROUTINE SIDEVEW (H, X, P)

This procedure produces a side view of TOM B and the
attached mock-up module. The perspective is always in
the direction of +1 axis of the body fixed coordinate
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50
51
52
53
54
55
56
57
538
59
60
61
62
63
64
65
66
67
68
69
70
71
72
1 73
1 74
75
76
77
78
79
80
81
32
83
34
85
86
87
88
89
90
91
92
93
94
95
96
97
98
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C system
C
C
C
C
C
REAL * 8 U, X, p, C, S
REAL XFORM(3,3), SDFORM(3,3), V0(3,10), V(3,10)
REAL ROT(3,3), FLOOR(3,3), VI1(3,10)
REAL cc, bp, LL, RR, WW, TT
INTEGER FLAG, N, CLR, EF,EEF, PRTFG
C
COMMON /MG/ FLAG, CC, DD, LL, RR, Ww, TT
COMMON /MF/ XFORM, SDFORM, VO, V1
COMMON /ME/ EF, EEF, PRTFG
C
C
N =10
AA = 1,0
C
C #%% define mock-up module shape at origin
C
DO 10K =1, N
V(3, K) = 1.0
100 CONTINUE
C << point A >
v(l,1) = TT
V(2,1) = -DD
C << point B »
V(1,2) =-TT
V(2,2) = -DD
C << point C >>
v(1,3) = -TT
v(2,3) = DD
C << point D >>
V(i,4) = TT
V(2,4) = DD
C
C *%¥* rotate it by P radians
C
CALL SINCOS (P, S, C)
CALL NOTHNG (ROT, 3)
ROT(1,1) = C
ROT(1,2) = -S
ROT(2,1) = S
ROT(2,2) = C
CALL XMUL (ROT, Vv, 4)
C

*%¥ calculate translation
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100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
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121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

MV

OO0

OO0

OO0

OO0
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PX = CC + LL * C
PY = H + LL * S

*#*%% move the rotated module out there

CALL NOTHNG (ROT, 3)
ROT(1,3) = PX
ROT(2,3) = PY
CALL XMUL (ROT, V, 4)

*%* now calculate the shape of the base

XX = X + CC

<< point E >
V(1,5) = CC
V(2,5) = H

<< point F >>
V(1,6) = CC
V(2,6) = AA

<< point G >»>
V(1,7) = CC
V(2,7) = 0.

<< point H >>
V(1,8) = -RR
v(2,8) = 0.

<< point I >
V(1,9) = -RR
V(2,9) = AA
V(1,10) = PX
v(2,10) = PY

*%x* Transform to floor coordinates

CALL NOTIING (FLOOR, 3)
FLOOR(1,3) =X
CALL XMUL (FLOOR, V, N)

*%* transform to screen coordinates
CALL XMUL (SDFORM, V, N)

*%%* erase old picture

CALL DRWFLR (VO)

IF ((EF .EQ. 0) .AND. (EEF .NE. 0)) THEN

CLR =0
CALL SDRAW (V1, N, CLR)
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J Line#
148
149
150
151
152
153
154
155

Jame
1A

CC
rLR
D
CLEF
IF
“LAC
“LOOR

\7
Vo
'Y
wW
X
FORM

156

MV I

1 7

Type

REAL
REAL*8
REAL
INTEGER*4
REAL
INTEGER*4
INTEGER*4
INTEGER*4
REAL
REAL*8
INTEGER*4
REAL
INTEGER*4
REAL*8
INTEGER*4
REAL

REAL

REAL

REAL
REAL*8
REAL

REAL

REAL

REAL

REAL

REAL
REAL*8
REAL

SPAGE

.07 25>
END IF
CLR = 1

CALL SDRAW (V, N, CLR)
CALL MOVE (v, Vi, N)

EEF = 1

RETURN
END

Offset P Class

198
218
4

234

192

/MG
/MG
/ME

/ME
/MG

/MG

/ME

/MG

/MF
/MG

/MF
/MF
/MG

/MF

N ~

~ NN NN ~
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157 C
158 C
159 SUBROUTINE SDRAW (V, N, CLR)
160 C
161 C
162 C
163 C
164 C
165 C This procedure draws the side view of TOM B
166 C
167 C
168 C
169 C
170 C
171 REAL V(3,10)
172 INTEGER N, CLR, X1, X2, Y1, Y2
173 C
174 C #*% draw mobile base
175 C
176 CALL RCT (v, 5, CLR)
177 C
178 C #*% draw linkage
179 C
180 X1 = V(1,6)
181 Y1 = V(2,6)
182 X2 = V(1,5)
183 Y2 = V(2,5)
184 CALL LINE (X1, Y1, X2, Y2, CLR)
185 X1 = V(1,10)
186 Y1 = V(2,10)
187 CALL LINE (X2, Y2, X1, Y1, CLR)
188 C
189 C *%% draw mock-up module
190 C
191 CALL RCT (v, O, CLR)
192 CALL PURGE
193 CALL CRFRDY
194 C
195 CALL TIOME
196 C
197 RETURN
198 END
Type Offset P Class
INTEGER*4 8
INTEGER=4 4 *
REAL 0 *
IHTEGER*4 238
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X2 INTFCER*4 246
Y1 INTEGER 242
Y2 INTECER™4 250

199 SPAGE
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200 C
201 C
202 SUBROUTINE RCT (V, OFF, CLR)
203 C
204 C
205 C
206 C
207 C This procedure draws a rectangle
208 C
209 C
210 C
211 C
212 C
213 REAL V(3,10)
214 INTEGER OFF, CLR, X(10), Y(10)
215 C
216 DO 100K =1, &4
217 J = K + OFF
218 X(K) = V(1,J)
219 Y(K) = V(2,J)
220 100 CONTINUE
221 CALL POLYGN(4, X, Y, CLR)
222 RETURN
223 END
Type Offset P Class

INTEGER*4
INTEGER*4
INTECER*4
INTEGER*4
REAL

INTEGER*4
INTEGER*4

224 SPAGE

8 =
338
334

4 *

O b
254
294
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22N SUBROUTINE - PLOT (CMD)
226 C
227 C
228 Commmmme-
2290 ¢
230 C
231 C This is the plot part of the graphical package, and can
232 C be directly callable from OMV or SVX. The value of FLAG
233 C obtained from the disk file named SIZE.DAT dictates one
234 C of top or side view to be displayed.
235 C
236 C
237 C
238 C
239 C
240 INTEGER CMD(7), FLAG
241 REAL * 8 X, Y, T, UL, UA, H
242 REAL XFORM(3,3),SDFORM(3,3),CC,LL,DD,RR,WW,TT
243 REAL v0(3,10), V1(3,10)
244 C
245 COMMON /MG/ FLAG, CC, DD, LL, RR, WW, TT
246 COMMON /MF/ XFORM, SDFORM, VO, V1
247 C
248 UL = 10000.0
249 UA = UL
250 C
251 IF (FLAC .EQ. O) THEN
252 T =CMD(1) / UA
253 X =CMD(2) / UL
254 Y =CMD(3) / UL
255 CALL TOPVEW (X, Y, T)
256 ELSE
257 I = CMD(4) / UL
258 X = CMD(2) / UL
259 T = CMD(5) / UA
260 CALL SIDEVEW (H, X, T)
261 END IF
262 C
263 RETURN
264 END
Type Offset P Class
REAL 4 /MG /
INTECER*4 0 =
REAL 8 /MG /
INTEGER*4 0 /MG /
REAL*8 382
REAL 12 /MG /
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REAL
REAL
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265 $PAGE
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36
358
24
350
342
72
192
20
366

374
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279
280
281
282
283
284
285
286
287
288
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290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
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SUBROUTINE TOPVEW (PX, PY, THETA)

This procedure constructs the top view of TOM_B. No
correction to perspective distortion is implemented

OO0 (@)

OO0

OO0OO0O0

@]

OO0

REAL * 8 PX, PY, THETA, S, C

REAL v(3,10), vO(3,10), SDFORM(3,3)
REAL ROT(3,3), FLOOR(3,3), XFORM(3,3)
REAL cc, DD, LL, RR, WW, TT, V1(3,10)
INTEGER FLAG, N, CLR, EF, EEF, PRTFG

COMMON /MG/ FLAG, CC, DD, LL, RR, WW, TT
COMMON /MF/ XFORM, SDFORM, VO, V1
COMMON /ME/ EF, EEF, PRTFG

N=10

¥#% get TOM_B shape at the origin
CALL ORGPOS (V, N)
*¥#% rotate by THETA if needed

IF (THETA .NE. 0.0) THEN
*%% construct rotation matrix
CALL NOTHNG (ROT, 3)
CALL SINCOS (THETA, S, C)
ROT(1,1) C
ROT(1,2) -S
ROT(2,1) S
ROT(2,2) C
**% rotate it
CALL XMUL (ROT, Vv, N)
END IF

*¥% transform to floor coordinates

CALL NOTHNG (FLOOR, 3)
FLOOR(1,3) = PX
FLOOR(2,3) = PY

CALL XMUL (FLOOR, V, N)
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315
316
317
318
319
320
321
322
323
324
325
326
327 C
328
329
330
331
332 C
333
334

OO0~

OO0

~me Type

REAL*8
z REAL
R INTEGER*4
' REAL
iF INTEGER*4
- INTEGER*4
AG  INTEGER*4
LOOR REAL
r REAL
INTEGER*4
ATFG INTEGER*4
X REAL*8
' REAL*8
)T REAL
REAL
REAL*8
JFORM REAL
[IETA REAL*S

T REAL

REAL
J REAL
1 REAL
d REAL
FORM REAL

335 SPAGE
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#%% transform to screen coordinates
CALL XMUL (XFORM, V, N)
*%* get ready to draw, but first erase old picture

CALL DRWFLR (V1)
IF ((EF .EQ. O) .AND. (EEF .NE. 0)) THEN

CLR=0

CALL DRAW (vO, N, CLR)
END IF
CLR = 1

CALL DRAW (V, N, CLR)
CALL MOVE (v, VO, N)
EEF = 1

RETURN
END

Offset P Class

594

4 /MG /
602

8 /MG /

4 /ME /

0 /ME /

0 /MG /
546

12 /MG /
582

8 /ME /

0*

4 *
510

16 /MG /
586

36 /MF /

8 *

24 /MG /
390

72 /MF /
192 /MF /
20 /MG /

0 /MF /

ORIGINAL PAGE IS
OF POOR QUALITY
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336
337
338 SUBROUTINE MOVE (v, VO, N)
339
340
341
342
343
344
345
346
347
348
349
350 REAL V(3,10), V0(3,10)
351
352 DO 100 K =1, N
353 DO100J =1, 3
354 vVo(J,K) = V({J,K)
355 100 CONTINUE
356 C
357 RETURN
358 END

DO

This procedure saves the shape vector V

OO0 CO0O0

O

I~ D

Name Type Offset P Class

INTEGER*4 614
TNTEGER*4 606
INTEGER*4 8
REAL 0
0 REAL 4

-~

< <
#* 3 3

359 $PAGE
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360 C
361 C
362 SUBROUTINE NOTHNG (A, N)
363 C
364 C
365 C
366 C
367 C
368 C This procedure initializes an N x N matrix A to a
369 C unit matrix
370 C
371 C
372 C
373 C
374 C
375 REAL A(NLN)
376 C
377 DO 100 K = 1, N
378 DO 200 =1, N
379 A(K,J) = 0.0
380 200 CONTINUE
381 A(K,K) = 1.0
382 100 CONTINUE
383 C
384 RETURYN
385 END
cme  Type Offset P Class
REAL 0 =
INTEGER=®4 626
INTEGER*4 618
INTEGER*4 4 *

386 S$PAGE
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388
389
390
391
392
393
394
395
396
397
398
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400
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403
404
405
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407
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416
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419
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C
C
SUBROUTINE XMUL (R, V, N)
C
C
C
C
C
C This procedure uses a transformation matrix R and
C transforms the shape vector V having N columns
C
C
C
C
C
REAL R(3,3), V(3,10), T(3), S
INTEGER ROW, COL
C
DO 100 COL = 1, N
DO 200 ROW =1, 3
S = 0.0
DO 300 J =1, 3
S =S + R(ROW,J) * V(J, COL)
300 CONTINUE
T(ROW) = S
200 CONTINUE
DO 400 L =1, 3
V(L,COL) = T(L)
400 CONTINUE
100 CONTINUE
C
RETURN
END
Type Offset P Class
INTEGER*4 646
INTEGER*4 662
INTEGER*4 666
INTEGER*4 8 * ORIGINAL PAGE IS
REAL 0 * OE POOR QUALITY
INTEGER*4 654
REAL 658
REAL 634
REAL 4 *

420 $PAGE
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454
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C
C
SUBROUTINE ORGPOS (V, N)
C
C
C
C
C
C This procedure calculates the shape vector V of TOM B
C at the orgin. Only the top view is considered here.
C
C
C
C
C
REAL vV(3,10), XFORM(3,3), V0(3,10), W(2)
REAL V1(3,10)
REAL cc, Db, LL, RR, WW, CL, SDFORM(3,3)
INTEGER FLAG, CORNR(2,2), EF, EEF, PRTFG
C
COMMON /MG/ FLAG, CC, DD, LL, RR, WW, TT
COMMON /MF/ XFORM, SDFORM, VO, V1
COMMON /ME/ EF, EEF, PRTFG
C
C
DO 100 K = 1, N
V(3, K) = 1.0
100 CONTINUE
C
C *%% get up shape matrix V
C
CL = CC + LL
C Corner << A >>
v(i, 1) = CC
v(2z, 1) = O
C Corner << B >
V(i, 2) = CC
V(2, 2) = -WW
C Corner << C >»>
v(i, 3) = -RR
V(2, 3) = -WW
C Corner << D >>
V(1l, 4) = -RR
V(2, 4) = WW
C Corner << E >
v(1, 3) = CC
v(2, 5) = W
C Corner << MM >>
V(l, 6) = CL
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D Line# 1 7
470
471 C
472
473
474 C
475
476
477 C
478
479
480 C
481
482
483 C
484
485

name  Type

C REAL
CL REAL
CORNR  INTEGER*4
Db REAL
EEF INTECER*4
EF INTEGER*4
FLAG  INTEGER*4
K INTEGER*4
LL REAL
N INTEGER*4
PRTFG INTEGER*4
RR REAL
SDFORM REAL
IT REAL
V REAL
VO REAL
/1 REAL
i RIIAL
Wi REAL
(FORM  REAL

486 SPAGE

V(2, 6)

v(l, 7)
vz, 7)

vV(l, 8)
v(2, 8)

V(l, 9)
vV(2, 9)

V(1,10)
V(2,10)

RETURN
END

Offset

4
702
678

192
670
20

>o0

nn

CL +
-DD
-DD

CL -
DD

CL + TT

DD

Class

/MG

/MG
/ME
/ME
/MG

/MG

/ME
/MG
/MF
/MG

/MF
/MF

/MG
/MF

NN N NN ~ NN

Page 16
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Corner << F >
Corner << G >

Corner << H >>

Corner << I >

DRIGINAL PAGE IS
DE POOR QUALITY
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SUBROUTINLE INITPL

492
493
494
495
496
497
498
499

This procedure initializes the system and calculates
all the necessary transformation matrices based on
the data obtained from SIZE,DAT

500
501
502
503
504
505
506
507 C
508

509

510

511 C
512

513

514

515

516

517 200
518

519

520

521 C
522

523

524 300
525

526

527

528 C
529

530

531

532

533

534 C
535 C

OCOOOCOO000Oah

(@]

REAL v0(3,10),XFORM(3,3),SDFORM(3,3), W(2)

REAL cc, Db, LL, RR, WW, TT, V1(3,10)

REAL CORNR(2,2), W(2) '

INTEGER FLAG, EF, CORNR(2,2), EEF, CORNS(2,2), PRTFG

COMMON /MG/ FLAG, CC, DD, LL, RR, WW, TT
COMMON /MF/ XFORM, SDFORM, VO, V1
COMMON /ME/ EF, EEF, PRTFG

EEF = 0
OPEN (7, FILE = 'SIZE.DAT')
READ (7, 10) CC, DD, LL, RR, WW, TT
DO 200K =1, 2
READ (7, 20) (CORNR(K,J), J=1, 2)

CONTINUE
W(1) = 12.2
W(2) = 24.4

CALL CORDX (CORNR, XFORM, W)

DO 300 K = 1, 2
READ (7, 20) (CORNS(K,J), J=1,2

CONTINUE

W(l) = 12.2

W(2) = 6.096

CALL CORDX (CORNS, SDFORM, W)

READ (7,20) EF
READ (7, 20) FLAG
READ (7, 20) PRTFG
CLOSE (7)

FLG =1

*%% calculate floor shape
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536 C
537
538
539 C
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576 C
577
578
579 10
580 20
581

Type

PLOT >

7

JW = 30

JL = 44

IF (FLAG .EQ. 0) THEN
J1 = CORNR(1,1)
L1 = CORNR(1,2)
J2 = CORNR(2,1)
L2 = CORNR(2,2)
JJ = (L2 - L1 +
V1(1,1) = J1l
V1(2,1) = L1
V1(1,2) = J2
V1(2,2) = L1
Vi(1,3) = J2
Vi(2,3) = L2
Vi(1l,4) = Jl
V1(2,4) = L2
Vi(1,5) = Jl
V1(2,5) = L2 + JW -
Vi(1,6) = J1 - JL
V1(2,6) = L2 + JW -
V1(1,7) = J1 - JL
Vi(2,7) = L2 - JL -
V1(1,8) = J1
v1(2,8) = L2 - JL -
vV1(1,9) = -1000.0
V1(2,9) = -1000.0

ELSE
Jl = CORNS(1,1)
L1 = CORNS(1,2)
J2 = CORNS(2,1)
L2 = CORNS(2,2)
Vo(l,1) = J1 - JL
Vo(2,1) = L2 + 1
vVOo(1,2) = J2 + JL
V0(2,2) = L2 +1
vo(1,3) = -1000.0
vo(2,3) = -1000.0

END IF

CALL GRAFICS
RETURN

FORMAT (F15.8)
FORMAT (I3)
END

Offset P Class

Page 18
07-14-84
14:03:20
Microsoft FORTRAN77 V3.13 8/05/83

1) /2

JJ
JJ
JJ

JJ
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CC REAL 4 /MG /
ORNR  INTEGER*4 714
ORNS INTEGER*4 730
DD REAL 8 /MG /
“EF INTEGER*4 4 /ME /
F INTEGER*4 0 /ME /
FLAG  INTEGER*4 0 /MG /
PLG REAL 758
INTEGER*4 750
! INTEGER*4 770
J2 INTEGER*4 778
J INTEGER*4 786
L INTEGER*4 766
Jw INTEGER*4 762
v INTEGER*4 746
1 INTEGER*4 774
L2 INTEGER*4 782
L REAL 12 /MG /
RTFG INTEGER*4 8 /ME /
R REAL 16 /MG /
SDFORM REAL 36 /MF /
T REAL 26 /MG /
0 REAL 72 /MF /
1 REAL 192 /MF /
' REAL 706
W REAL 20 /MG /
.FORM REAL 0 /MF /
582 $PAGE : ORIGINAL PAGE IS

OF POOR QUALITY
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C
C
SUBROUTINE DRWFLR (V)
C
C
C
C
C This subroutine draws the floor portion of graphics
C
C
C
C
C
REAL V(3,10) *
INTEGER CT, X(10), Y(10)
C
CT=1
C
C REPEAT
100 K =CT
X(K) = V(1,K)
Y(K) = V(2,K)
CT =CT+1
IF (V(1,CT) .GE. -100.0) GO TO 100
C UNTIL V(1,CT) < -100.0
C
CALL POLYGN (X, X, Y, 1)
RETURN
EN
Type Offset P Class
INTEGER*4 884
INTEGER*4 838
REAL 0 *
INTEGER*4 804
INTEGER*4 844

SPAGE
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613 C
614 C
615 SUBROUTINE DRAW (V, N, CLR)
616 C
017 C
oly C
619 C
620 C
621 C This procedure actually draws the top view of TOM_B.
622 C
623 C This procedure must be modified if different hardware
624 C is used for the graphics display
625 C
626 C
627 C
628 C
0629 C
630 REAL vV(3, 10)
631 INTEGER X1, X2, Y1, Y2
632 INTEGER CLR
633 C
034 C ##% draw mobile base
635 C
636 CALL RCT (v, 1, CLR)
637 C
H38 C =%% draw connecting line
639 C
640 X1 = V(1,1)
641 Yl =V(2,1)
642 X2 = V(1,6)
6473 Y2 = V(2,6)
644 CALL LINE (X1, Y1, X2, Y2, CLR)
645 C
046 C *%% draw mocked-up
647 C
648 CALL RCT (v, 6, CLR)
649 C
650 CALL PURGE
651 CALL GRFRDY
6352 CALL HOME
633 C
654 RETURN
655 END

Type Offset P Class

INTEGER*4 8 *

INTEGER*4 4 *

REAL 0 =
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INTEGER*4 892
INTEGER*4 200
INTEGER*4 396
INTEGER*4 904

656 $PAGE
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657 C
658 C
659 SUBROUTINE CORDX (C, T, W)
660 C
661 C
562 Commm
663 C
664 C
665 C This procedure computes the necessary transformation
666 C matrices from floor to screen coordinates
667 C
668 C
669 C
670 C
671 C
672 INTEGER C(2,2)
673 REAL T(3,3), W(2)
674 C :
675 C *¥% set up transformation matrix T
676 C
677 T(1,3) = C(1,1)
678 T(2,3) = C(2,2)
679 T(3,3) = 1.0
630 C
681 T(1,1) = (C(2,1) - T(1,3)) / W(1)
682 T(2,1) = (C(2,2) - T(2,3)) / W(1)
633 T(3,1) = 0.0
684 C
685 T(1,2) = (C(1,1) - T(1,3)) / W(2)
686 T(2,2) = (C(1,2) - T(2,3)) / H(2)
687 T(3,2) = 0.0
688 C
639 RETURN
690 END
Type Offset P Class
INTEGER*4 0 =
REAL 4 *
REAL 8 *

091 SPAGE
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0693
694
695
696
097
698
699
700
701
702
703
704
705
706
707
708
709

OO0 OOOO0O00—

Type

CHAR*1
INTEGER*4

710 $PAGE
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This is a graphics package for the TECMAR GRAPHICS MASTER board
written under Microsoft's FORTRAN 77. To use this package, one
must include this package in the source file, A graphics master
must already be installed, or the software will hang.

SUBROUTINE PURGE

This procedure purges the graphics buffer and forces the board
to complete the drawing by closing the graphics channel.

INTEGER GRF
CHARACTER ESC
COMMON /GMBD/ GRF, ESC
CLOSE (GRF)

RETURN

END

Offset P Class

4 /GMBD /
0 /GMBD /
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1 C
712 C
713 SUBROUTINE GRFRDY
714 C
715 C This procedure opens the graphics channel and sets it ready for
716 C communication
717 C
718 C
719 INTEGER GRF
720 CHARACTER ESC
721 COMMON /CMBD/ GRF, ESC
722 OPEN (GRF, FILE = 'gm')
723 RETURN
724 END
Name Type Offset P Class
ESC ClIAR*1 4 /GMBD /
GRF INTEGER*4 0 /GMBD /

725 $PAGE




.1

ame

oMV P

nef
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740 10
741

o0 -

OO0

Type

INTEGER*4
CHAR*1

INTEGER*4
INTEGER*4

742 SPAGE
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SUBROUTINE SETFB (FG, BG)

This procedure sets the foreground color to FG and the backgroun
color to BG. Both arguments must be of INTEGER type.

INTEGER GRF, FG, BG

CHARACTER ESC

COMMON /GMBD/ GRF, ESC

WRITE (GRF, 10) ESC, FG, BG

RETURN

FORMAT (' ', AL, '[!, I2, ';', I2, 'c"\)
END

Offset P Class

e
b3

4

4 /GMBD /
0 *

0O /GMBD /
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CHAR
EsC
GRF

ne#
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Mv P

(@ Re N

OOO0OCO

C

10
20
30

Type

CHAR*1

770

INTEGER*4

SPAGE
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SUBROUTINE GRAFICS

This procedure enters the GM graphics mode with a four-line text
window at the bottom

INTEGER GRF
CHARACTER ESC
COMMON /GMBD/ GRF, ESC
GRF = 9

ESC = CHAR(27)

CALL GRFRDY

WRITE (GRF, 10) ESC
WRITE (GRF, 20) ESC
wRITE (GRF, 30) ESC
CALL SETFB (1, 0)
CALL HOME

RETURN

FORMAT (' ', Al, '[!Om'\)

FORMAT (' ', Al, '[!6403352;2g'\)
FORMAT (' ', Al, '[21;24r')\)

END

Offset P Class

INTRINSIC
& /GMBD /
0 /GMBD /
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771 C
772 C
773 SUBROUTINE QUITGM
774 C
775 C
776 C This procedure gets one out of graphics mode and returns
777 C to text mode
778 C
779 C
780 CHARACTER CH, ESC
781 INTEGER GRF
782 COMMON /GMBD/ GRF, ESC
783 C
784 CALL HOME
785 WRITE (GRF, 30)
786 CALL PURGE
787 READ (*, 10) CH
788 CALL GRFRDY
789 CALL TEXT
790 RETURN
791 10 FORMAT (Al)
792 30 FORMAT ('Press <CR> to continue ... '\)
793 END
e Type Offset P Class
CHAR*1 1015
CHAR*1 4 /GMBD /
INTEGER*4 0O /GMBD /

794 $PAGL
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795 C
796 C
797 SUBROUTINE TEXT
798 C
799 C
800 C This procedure returns the system to text mode
801 C
802 C
803 INTEGER GRF
804 CHARACTER ESC
305 COMMON /GMBD/ GRF, ESC
806 WRITE (GRF, 10) ESC
807 RETURN
308 C
809 10 FORMAT (' ', Al, '"[!80;25;1a'\)
810 LND

Type Offset P Class

CHAR*1 4 /GMBD /

INTEGER*4 0 /GMBD /

811 $PAGE
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$512 C
313 ¢
314 SUBROUTINL LINE (X1, Y1, X2, Y2, COLOR)
815 C
516 C
817 C This procedure draws a line from (X1,Yl) to (X2,Y2) in COLOR
&18 C
319 C
820 INTEGER GRF, X1, Y1, X2, Y2, COLOR
321 CIIARACTER ESC
322 COMMON /GMBD/ GRF, ESC
823 WRITE (GRF, 10) ESC, X1, Y1, X2, Y2, COLOR
824 10 FORMAT (' ', Al, '[!'', 4(13,';"), I3, '1'\)
825 END
1ie Type Offset P Class
ILOR INTEGER*4 16 *
p CHAR™1 4 /GMBD /
: INTEGER*4 0 /GMBD /
INTECER™4 0 *
INTEGER*4 8 *
INTEGER*4 4 *
INTEGER*4 12 *

326 SPAGE
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830
331

299
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83

533

335
536
337
838
339
340
5341
342
343

v

344

v P

Oy

CcCOCOCO0O

10

I'vpe

INTEGER*4
CHAR*]

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
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SUBROUTINE HIDELN (X1, Y1, X2, Y2, COLOR)

This procedure draws the line (X1,Y1) - (X2,Y2) but aborts drawi
before reaching target if a dot in a color other that BG is

encountered
INTEGER GRF, X1, Y1, X2, Y2, COLOR
CHARACTER ESC

COI-MON /GxBD/ GRF, ESC

WRITE (GRF, 10) ESC, X1, Y1, X2, Y2, COLOR
RETURN

FORMAT (' ', Al, '[!'', 4(I3, ';'), I3, 'S'\)

£4D

Offset P Class

3

16
/GMBD /
/GMBD /

NSO O

3% 36 ¥ *
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846 C

347
=348
849
350
351
852
353
354
855
856
857
$58
859
260 100
361

862

863 10
804 20
865 30
866

OO0

e Type

.OR INTEGER*4

CHAR*1

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

867 SPAGE
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SUBROUTINE POLYGN (N, X, Y, COLOR)

This procedure draws a closed polygon whose N vertices are store
in the arrays X and Y. The color to be used is COLOR

INTEGER GRF, X(N), Y(N), COLOR
CHARACTER ESC
COMMON /GMBD/ GRF, ESC
WRITE (GRF, 10) ESC
DO 100 K =1, XN
WRITE (GRF, 20) X(K), Y(K)

CONTINUE

WRITE (GRF, 30) COLOR
RETURN

FORMAT (' ', Al, '[!'\)
FORMAT ( 2(13, ";"HOV)
FORMAT ( 13, 'p'\)
EXD

Offset P Class

3¢

12
4  /GMBD
0 /GHMBD

~ ~

&
3
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Name

ESC
GRF
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neit 1 7
868
369 C
870 SUBROUTINE  HOMF
871 C
872 C
373 C THIS SUBROUTINE (IOMES TIIE CURSOR
874 C
575 C
876 INTEGER GRF
877 CIIARACTER ESC
878 C
379 CO'L1oN /GMBD/ GRF, ESC
880 C
381 WRITE (GRF, 10) ESC
382 RETURN
883 10 FORMAT (' ', Al, '[ 1;1 £'\)
884 END
Type Offset P Class
CHAR*1 4 /GMBD /
INTEGER*4 0 /GMBD /

885 $PAGE
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-2 Type Size

JRDX
W
FLR
iBD 5
AFIC
RDY
.JELN
WE
TPL
I
) 12
312
28
wE
'THNG
POS
IT
JLYGN
CGE
ITGM
T
RAW
[FB
DEVE
NCOS
XT
PVEW
UL

’ass One No Errors Detec
885 Source Lines

Class

SUBROUTINE
SUBROUTINE
SUBROUTINE
COrMON

SUEROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
COMMON

COMMON

COMMON

SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE

ted

Page 34
07-14-84
14:03:20
‘licrosoft FORTRAN77 V3.13 8/05/83

SRIGINAL PAGE 15



APPENDIX 3

OMV Data Files Used During Development



File :

INITCON.DAT

This file contains all the needed initial conditions

0.0 POS(1)
0.0 POS(2)
0.0 POS(3)
0.00 VEL(1)
0.0 VEL(2)
0.0 VEL(3)
0.0 EUL(1)
0.0 EUL(2)
0.0 EUL(3)

initial
initial
initial
initial
initial
initial
initial
initial
initial

condition
condition
condition
condition
condition
condition
condition
condition
condition

ROLL
PITCH
YAW



File :

MDLPRM.DAT

This file contains all the model parameters needed by OMV

00.075
00.075
00.075
000.52359878
000.52359878
000.52359878
7048.37
3713.95
3713.95
3282.75

0.1

1

10

200.0

ACC(1) : Acc
ACC(2) : Acc
ACC(3) : Acc

WWB(1) : body
WWB(2) : body
WWB(3) : body

along X-axis
along Y-axis
along Z-axis
rate about X
rate about Y
rate about Z

III(1) principal moment of
11I(2) principal moment of
ITI(3) principal moment of
Mass in kilograms

ma jor cycle period in seconds

MODE :

(body)

(body)

(body)

axis

axis

axis

inertia along 1 axis
inertia along 2 axis
inertia along 3 axis

1 for position control

No. of steps per major cycle
altitude of orbit in kilo-meters



File : SVXINT.DAT

This file contains all the system initialization data needed by the SVX module

0.5588 CC  IN METERS
0.762 LL  IN METERS
11,668 AA  IN METERS
2.4384 HH  IN METERS
7048.37 TINV(1)
3713.95 TINV(2)

3713.95 LINV(3)



File : HNDSGL.DAT

This file contains the simulated hand controller signals
(Partial list)

100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000



File : SIZF.DAT

This file contains all the plot parameters
for the
graphics package PLOT

0.5588 CC : 22 inches

2.1336 DD : 84 inches

0.762 LL : 30 inches

1.016 RR : 40 inches

0.6096 WW : 24 inches

0.3048 TT : 12 inches

409 CORNR(1,1)

001 CORNR(1,2)

630 CORNR(2,1)

350 CORNR(2,2)

100 CORNR(1,1) SIDE VIEW

152 CORNR(1,2) SIDE VIEW

500 CORNR(2,1) SIDE VIEW

300 CORNR(2,2) SIDE VIEW

000 PLOT MODE : <> O MEANS NO CLEAR
000 VIEW : O = TOP VIEW, <> 0 = SIDE VIEW

001 PRTFG: 1-PLOT 2-PRINT 3~PLOT & PRINT



APPENDIX 4

OMV Mathematical Model (OMM) Source Listing
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l.Line# 1 7
1 SLINESIZE:79
2 SPAGESIZL: 56
3 $TITLE: '«¢« O MV  >»'
4 C
5C OMV SIMULATION MODEL
6 C
7C
8 C by
9 C
10 C
11 C Dr. W. Teoh
12 C
13 C UAH Huntsville
14 C 1984
15 C
16 C
17 C
18 C This is a simplified version of a mathematical simulation
19 C model of the OMV. In this model, the following simplfications
20 C and assumptions are made :
21 C
22 C 1. The hand controllers provide signals that are interpreted
23 C as a force at the center of mass and/or a torque about the
24 C center of mass to provide a rotation of constant angular
25 C velocity,
26 C 2. The target vehicle is in a circular orbit; the altitude of
27 C this orbit is inputted from the MDLPRM.DAT file.
28 C 3. Orbital mechanics is implemented, but smaller perturbation
29 C effects are totally ignored.
30 C 4. Detailed placement of thrusters is not considered (Please
31 C see assumption 1. above)
32 C 5. Roll, pitch and yaw denote the instantaneous orientation
33 C of the OMV,
34 C
35C A 14 component state vector is generated by this model, and
36 C this state vector serves as input to the SVX module.
37 C
38 C
39 C--
40 C
41 REAL * 8 X(3), V(3), E(3), A(3), W(3), Q(4)
42 REAL * 8 POS(3), VEL(3), EUL(3), OMEGA
43 REAL * 8 I111(3), S(14), MASS, CYCLE
44 INTEGER CMD(7), IN, FLAG, MODE, STEP
45 INTEGER * 4 TIME
46 C .
47 COMMON /MC/ III, MASS, CYCLE, MODE, STEP
48 COMMON /PC/ POS, VEL, EUL, OMEGA

49 C




7L 0

D Line#
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

-
68
69
70
71
72
73
74
75
76
77
78
79
80
81

2
<

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

MV

OO0

OO0

OO0 OO0 OO0~ 000

OO0

>

IN =
TIME
CALL
OPEN

WHIL

END

Page 2
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system initialization

2
= -1

OMVMDL (IN)

(IN, FILE = "HNDSGL.DAT')

**%% Note : this invokes graphics routines, and can be
elimiated if nc graphics output.

INITPL

calculate the initial quaternions at the start of the
simulation and read hand controller

DETG  (EUL, Q)

HNDCTL (IN, FLAG, A, W)

MATCH (EUL, POS, VEL, E, X, V, 3)
STATE (Q, S, W)

SVX (S, CMD, MODE)

OUTPUT (A, W, X, V, E, Q, S, CMD, TIME)
=0

main processing loop

E (FLAG = 0) DO
IF (FLAG .NE. 0) GOTO 900

*%% copy initial state into work vectors and use these
**% work vectors for solving the equations of motion

CALL MOTION (X, V, E, A, W, Q)
*%% ypdate dynamic state
CALL MATCH (E, X, V, EUL, POS, VEL, 3)

#**%% calculate state vector and pass it on to the State
*%*% Vector Transformation module

CALL STATE (Q, S, W)
CALL SVX (S, CMD, MODE)
CALL OUTPUT (A, W, X, V, E, Q, S, CMD, TIME)

**% poll hand controller and get the next set of signals
CALL HNDCTL (IN, FLAG, A, W)

GOTO 100
WHILE



<

oMV >

Line# 1 7

99 900

100
101

C
102 C
C

103
104

105
106
107

OO0

108
109

.ne

Type

REAL*8
INTEGER*4
REAL*8
REAL*8
REAL*8
INTEGER*4
REAL*8
INTEGER*4
REAL*8
INTEGER*4
REAL*8
REAL*8
REAL*8
REAL*8
INTEGER*4
INTEGER*4
REAL*8
REAL*8
REAL*8
REAL*8

110 $PAGE

>

CONTINUE
CLOSE (IN)
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***% *** This is also a call to the graphics package

CALL QUITGM

*** (Grand exit, stage left

STOP
END

Offset P Class

242
266
32
74
48
302
0
294
24
40
72
0
98
130
44
298
26
24
50
2

/MC
/PC
/MC
/MC
/MC

/PC
/PC

/MC

/PC

NN ~ ~ ~
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D Line#
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

MV
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SUBROUTINE OMVMDL (IN)

This procedure obtains the necessary parameters of the OMV
by reading them from a disk file called MDLPRM.DAT after
getting the initial state of the OMV (from a file called
INITCON.DAT

OOOOOO0OO0O0N

[oNeoNe!

OO0

[eNeN®!

OO0

REAL * 8 POS(3), VEL(3), EUL(3), OMEGA
REAL * 8 ACC(3), III(3), WWB(3), INV(3)
REAL * 8 MASS, CYCLE, ORBIT

INTEGER IN, MODE, STEP

COMMON /DC/ ACC, WWB
COMMON /MC/ 1II, MASS, CYCLE, MODE, STEP

COMMON /PC/ POS, VEL, EUL, OMEGA
*%% oget initial conditions of the OMV

OPEN (IN, FILE = 'INITCON.DAT')
CALL VECTOR (IN, POS, 3)

CALL VECTOR (IN, VEL, 3)

CALL VECTOR (IN, EUL, 3)

CLOSE (IN)

**% read acceleration, angular rates and
*%% principal moments of inertia in body frame

OPEN (IN, FILE = "MDLPRM.DAT')
CALL VECTOR (IN, ACC, 3)
CALL VECTOR (IN, WWB, 3)
CALL VECTOR (IN, III, 3)

*** read mass characteristics & other parameters

READ (IN, 10) MASS
READ (IN, 10) CYCLE
READ (IN, 20) MODE
READ (IN, 30)  STEP
READ (IN, 10) ORBIT
CLOSE (IN)

*¥** calculate orbital frequency




<<

oMV >>

© Line# 1 7

ame

160

161 C
162 C
163
164 10
165 20
166 30
167

Type

REAL*8

SLE  REAL*8

UL

*SS
DE

REAL*8
REAL*8
INTEGER*4
REAL*8
REAL*8
INTEGER*4

vEGA REAL*8
RBIT REAL*8

.EP
=L

REAL*8
INTEGER*4
REAL*8
REAL*8

168 SPAGE

>

CAL

RET

L ANGFRE (ORBIT, OMEGA)

URN

FORMAT (F15.8)

FOR
FOR
END

MAT (I1)
MAT (I2)

Dffset P

0
32
48

0

0 *

306
24
40
72

330

0
44
24
24

Class

/DC
/MC
/PC
/MC

/MC
/MC
/PC

/PC
/MC
/PC
/DC

NN NN

NN ~N N
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169 C
170 C
171 SUBROUTINE ANGFRE(ORB, W)
172 C
173 C
174 C--
175 C
176 C This procedure calculates the orbital angular frequency
177 C at a given altitude. In this calculation, the altitude
178 C must be given in kilo-meters. This is necessary in order
179 C for the calculations to be carried out without lossing
180 C precision. The angular frequency W is in rad/second
181 C
182 C
183 C
184 REAL * 8 ORB
185 REAL *# 8 ALT, R3, W
186 C
187 ALT = ORB * 0.001
188 R3 = (6.370 + ALT) ** 3
189 W = DSQRT (398.86 / R3) * 0,001
190 RETURN
191 END
Name  Type Offset P Class
ALT REAL*8 358
DSQRT INTRINSIC
ORB REAL*8 0 *
R3 REAL*8 366
W REAL*8 4 *

192 $PAGE



i

e

ne#
103
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
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C
C
SUBROUTINE VECTOR (M, A, N)
C
C
C
C
C
C This procedure reads a vector A of N elements from input
C unit M
C
C
C
INTEGER M, N
REAL * 8 A(N)
C
DO 100 K= 1, N
READ (M, 10) A(K)
100 CONTINUE
RETURN
10 FORMAT (F15.8)
END
Type Offset P Class
REAL*8 4 *
INTEGER*4 374
INTEGER*4 0 *
INTEGER*4 8 *

215 $PAGE



<LK 0

D Line#
210
217
218
219
22
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

MV

—

aOD

>o0

SUBROUTINE HNDCTL (IN, FLAG, A, W)
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Simulates hand controllers input by reading from a file
(called HNDSGL.DAT 12) integers to simulate a 12 bit output
of the hand controllers, Bit assignments are as follows :

C
C
C
C
C
C
C
C bit meaning (direction in body frame)
C === =
C 1 Accelerate along +1 axis
C 2 Accelerate along -1 axis
C 3 Accelerate along +2 axis
C 4 Accelerate along -2 axis
C 5 Accelerate along +3 axis
C 6 Accelerate along -3 axis
C 7 Rotate about +1 axis
C 8 Rotate about -1 axis
C 9 Rotate about +2 axis
C 10 Rotate about -2 axis
C 11 Rotate about +3  axis
C 12 Rotate about -3 axis
C
C
C

REAL * 8 ACC(3), WWB(3)

REAL * 8 A(3), W(3)

INTEGER SL(6), SA(6), FLAG

COMMON  /DC/ ACC, WWB
C

FLAG = O

READ (IN, 10, END = 90, ERR = 90) SL, SA
C
C *%% no error, generate matrices A and W
C

CALL FUDGE (A, ACC, SL)

CALL FUDGE (W, WWB, SA)

RETURN
90 CONTINUE
C
C *** error condition
C

FLAG = 1

RETURN
10 FORMAT (20I1)

END



40 MV O

lLine# 1 7
2 Type

REAL*8
REAL*8
.aG  INTEGER*4
i INTEGER*4
INTEGER*4
INTEGER*4
REAL*8
e REAL*8

264 S$PAGE

Offset

OO

390
12
24

P Class

*®

*
%*

/DC

/DC

Microsoft FORTRAN77

Page O
07-14-84
12:51:14
V3,13 8/05/83
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265 C
266 C
267 SUBROUTINE FUDGE (A, ACC, SL)
268 C
269 C--
270 C
271 C *** Sets appropriate components based on SL
272 C
273 C
274 C
275 INTEGER SL(6), T, K, J
276 REAL * 8 ACC(3), A(3), X
277 DO 100 K = 1, 6, 2
1 278 J = (K+1) /2
] 279 X = 0.0
| 280 T = SL(K) + SL(K+1)
1 281 IF (T .EQ. 1) THEN
1 282 X = ACC(J)
1 283 IF (SL(K) .EQ. 0) X = =X
I 284 END IF
1 285 A(J) =X
1 286 100 CONTINUE
287 RETURN
288 END
Name Type Offset P Class
A REAL*S8 0 *
ACC REAL*E 4 *
J INTEGER*4 450
K INTEGER*4 446
SL INTEGER*4 8 *
T INTEGER*4 462
X REAL*8 454

289 $PAGE



¢

DLi

~aame

CYCL
“UL
11
L
]
I.
-IASS
MODE

MEG
POS

>
<TEP

w
[

MV 5>

ne# 1 7

339 S(1
340 C

341 RET
342 END

Type

REAL*8
REAL*8

E REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
INTEGER*4
INTEGER*4

A REAL*8
REAL*8
REAL*8
REAL*8
REAL*3B
INTEGER*4
REAL*8
REAL*S

343 $PAGE
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4) = MASS
URN
Offset P Class
642
570
32 /MC /
48 /PC /
0 /MC /
546
498
522
24 /MC /
40 /MC /
714
72 /PC /
0 /PC /
0 *
466
4 *
44 /MC /
24 /PC /
8 *

PRECEDING PAGE BLANK Nor ILMED



Li

ne

ne#
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

364

[@Ne N
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SUBROUTINE PUT (., S, A, M)

#*% The procedure copies a vector A into a larger one S
starting at the N-th element of S

OO0OOO00O000O0

100

Type

REAL*8
INTEGER*4
INTEGER*4
INTEGER*4
REAL*8

$PAGE

REAL * 8 S(14)
REAL * 8 A(M)

3

DO 100 K 1, M
N N+ 1
S(N)= A(K)

CONTINUE

RETURN

END

Offset P Class

8 *
718
12
0
4

# 5t 3



<K<

D Li

Name

RO

0

ne#
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

384
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C
C
SUBROUTINE DOTPRD (A, B, C, N)
C
C
C
C #%% This procedure calculates a vactor C from two other
C vectors A and B such that
C C(I) = A(I) * B(I)
C for all i =1 to N
C
C—-
C
REAL * 8 A(N), B(N), C(N)
DO 100K =1, N
C(K) = A(K) * B(K)
100 CONTINUE
RETURN
END
Type Offset P Class
REAL*8 0 *
REAL*8 4 *
REAL*8 8 *
INTEGER*4 726
INTEGER*4 12 *
SPAGE



<K 0

) Line#
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

ame

(e

1iETA

413
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C
C
SUBROUTINE DETQ (E, Q)
C
C
C
C ¥#% calculates quaternions from the Euler angles
C using expression given by Zack.
C
C
C
REAL * 8 E(3), Q(4)
REAL * 8 c1, s1, C2, S2, C3, S3, THETA
C
THETA = E(1) / 2.0
CALL SINCOS (THETA, S1, Cl)
THETA = E(2) / 2.0
CALL SINCOS (THETA, S2, C2)
THETA = E(3) / 2.0
CALL SINCOS (THETA, S3, C3)
C
Q(1) =S1 *C3 *C2 + Cl *S83 * 232
Q(2) = S1 *#8S3 *C2 + Cl *(C3 * 82
0(3) =Cl *S3 *C2 - S1 *(C3* 82
Q(4) =Cl *C3 *C2 - S1 *83 * 82
C
RETURN
END
Type Offset P Class
REAL*8 750
REAL*8 766
REAL*8 782
REAL*8 0 *
REAL*8 4 *
REAL*8 742
REAL*8 758
REAL*8 774
REAL*8 734
SPAGE



<< OMV O Page 16
07-14-84
12:51:14
D Line# 1 7 Microsoft FORTRAN77 V3.13 8/05/83
414 C
415 C
416 SUBROUTINE SINCOS (THETA, S, C)
417 C
418 C
419 C—-
420 C
421 C *#%* this procedure returns the sine and cosine of an
422 C angle THETA.
423 C -
424 Cem
425 C
426 REAL * 8 THETA, S, C, A
427 C
428 C = DCOS(THETA)
429 S = DSIN(THETA)
430 RETURN
431 END
Name Type Offset P Class
A REAL*8 Adekokok
C REAL*8 8 *
DCOS INTRINSIC
DSIN INTRINSIC
S REAL*8 4 *
THETA REAL*8 0 *

4322 SPAGE
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) Line#
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
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C
C
SUBROUTINE MOTION (X, V, E, A, W, Q)
C
C
C
C *%x% This procedure solves the equation of motion
C
C-
C
REAL * 8 POS(3), VEL(3), EUL(3), OMEGA
REAL * 8 X(3), V(3), E(3), A(3), W(3), Q(4)
REAL * 8 CIN(3,3), C(3,3), AA(3,10), B(3), QQ(4)
REAL * 8 wWw(3), PI, TWO
REAL * 8 ITII(3), MASS, CYCLE
INTEGER MODE, STEP
C
COMMON  /MC/ TII, MASS, CYCLE, MODE, STEP
COMMON  /PC/ POS, VEL, EUL, OMEGA
C
H = CYCLE / FLOAT(STEP)
N = STEP
PI = 355.0 / 113.0
TWO= PI * 2.0
C
C *%% Djvide 1 major cycle into N equal subintervals and
C #*%%* determine the OMV state for each interval
C
DO 100 KK = 1, N
C
C *%%*  [Jpdate orientation
C
DO 2003 =1, 3
WW(J) = W(J) *H
E(J) = E(J) + WW(J)
IF (E(J) .GT. TWO) E(J) = E(J) - TWO
200 CONTINUE
C
C **% (Calculate quaternion for this rotation, and transform
C *¥* it to local vertical frame with respect to initial frame
C
CALL DETQ( WWw, QQ)
CALL UPDQ (Q, QQ)
C
C. #** from the direction cosine matrix, calculate the
C %*%% acceleration vector in LVF and store it in the
C **% acceleration matrix AA
C

CALL DCSINV (Q, CIN)




Name

A
AA

B

CIN
CYCLE
D

EUL
FLOAT
H

IT1

J

KK
“{ASS
'IODE
OMEGA
PI
POS

Q

0
3TEP
TWO

V

VEL

W

Wi

X

493

Type

REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8

REAL
REAL*8
NTEGER*4
INTEGER™*4
REAL*S8
INTEGER™4
INTEGER*4
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
INTHGER*4
REAL*S
REAL=®8
REAL*8
REAL*8
REAL*8
REAL*8

$PAGE

CON

s
=

L3

e uts
br 3
e ste
RIR

CALL

DMUL

(CIN,
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A, B, 3)

CALL STORE (B, AA, KK)

TINUE

Solve the equation of motion using the Adam-Brashford
method

CALL SOLVE (X, V, AA, N, H, OMEGA)

RET
END

URN

Offset

12
990
1230
918
846
32

8
48

1254
0
1286
1278
24
40
1258
72
1262
0

20
814
44
1270
4

24
16
790
0

3

v
n”

Class
/MC /
/PC /
INTRINSIC
/MC /
/MC /
/MC /
/PC /
/PC /
/MC /
/PC /



Li

ime

nef
494
495
496
497
4908
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513

514
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C
C
SUBROUTINE MATCH (A, B, C, P, Q, R, N)
C
C
C
C
C *%*% This procedure makes an exact duplicate B of a
C vector A of N elements
C
C
C
REAL * 8 A(N), B(N), C(N), P(N), Q(N), R(N)
DO 100K =1, 3
P(X) = A(K)
Q(K) = B(K)
R(K) = C(K)
100 CONTINUE
RETURN
END
Type Offset P Class
REAL*8 0 *
REAL*8 4 *
REAL*8 8 *
INTEGER*4 1290
INTEGER*4 24 ¥
REAL*8 12 *
REAL*8 16 #
REAL*8 20 *

SPACE
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Name

AA
AAA

0

ne#
513
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534

535
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C
C
SUBROUTINE STORE (AAA, AA, K)
C
C
C
C
C This procedure takes an instantaneous acceleration vector
C AAA and stores it in the acceleration matrix AA which is needed
C by the numerical integration process
C
C
C
REAL * 8 AA(3, 10)
REAL * 8 AAA(3)
DO 100 J =1, 3
AA(J,K) = AAA(J)
100 CONTINUE
RETURN
END
Type Offset P Class
REAL*8 4 *
REAL*8 0 *
INTEGER*4 1294
INTEGER*4 8 *

$PAGE
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539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
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573
574
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576
577
578
579
580
581
582
583
584
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C
C
SUBROUTINE SOLVE(X,V,A,N,II,W)
C
C
C
C This subroutine produces the numerical solution to the
C system of equations of motion using a 3 step Adam-Brashford
C method.
C
C
C
LOGICAL FLAG
REAL*8 X(3), V(3), A(3,10), AA(3,13), U(6,13)
REAL*8 WX2, WXW, WXWX3, HD12, F, W
COMMON /BLOCK/ AA, U, WX2, WXW, WXWX3, HD12
DATA FLAG /.TRUE./
C
C *¥* pack user supplied nonhomomgenous part of DE
C **% jnto the higher part of AA
C
DO 10I=1,10
DO 10K =1,3
AA(K,I+3) = A(K,I)
10 CONTINUE
C
C *%% jif this is the first call to solve (FLAG = T), then
C *%%¥ jt is necessary to initialize some parameters
C
I (FLAG) THEN
CALL INNIT(X,V,W,II)
FLAG = .FALSE.
END IF
C
C #%% yse the Adams-Brashford 3-step method to advance the
C #*%*% golution H time units. Place the solution back into
C *** X and V.
C
DO 100 I = 4,N+3
DO 100J =1,6
u@J,I) = U(J,I-1) +
HD12*(23*F(J,I-1)-16%F(J,1-2)+5%F(J,I-3))
100 CONTINUE
X(1) = U(1,N+3)
V(1) = U(2,N+3)
X(2) = U(3,N+3)
V(2) = U(4,N+3)
X(3) = U(5,N+3)

V(3) = U(6,N+3)
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D Line#
585
586
587
588
589
390
591
592
593
594

oot —

Name

AA

F
FLAG
H
D12

R S el A

WX2
WXW
WXWX3
X

595

MV 5>

OO~

200

Type

REAL*8
REAL*8
REAL*8
LOGICAL*4
REAL
REAL*8
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
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k% reset U and AA for the next call to SOLVE

IF (J .LE. 3) AA(I,J) = AA(I,N+J)

DO 200 J = 1,6
DO 200 I = 1,3
U(J,I) = U(J,N+I)
CONTINUE
RETURN
END
Offset P Class
8 *
0 /BLOCK /
FUNCTION
1298
16 *
960 /BLOCK /
1302
1314
1306
12 *
312 /BLOCK /
4 *
20 *
936  /BLOCK /
944  /BLOCK /
952 /BLOCK /
0 *



<

Li

ame

A

9]

ne#
596
597
598
599
600
601
602
603
604
605
606
607
608
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613
614
615
616
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619
620
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622
623
624
625
626
627
628
629
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631
632
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635
636
637
638
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SUBROUTINE INNIT(X,V,W,H)

This procedure initializes all the necessary parameters
before solving the system of ordinary differential equatioms.
This procedure is invoked only once.

OO0

300

Type

REAL*S

REAL * 8  X(3), V(3), AA(3,13), U(6,13), WX2, WXW, WXWX3
REAL * 8 CWT, Swr, T, W, HD12

COMMON /BLOCK/ AA, U, WX2, WXW, WXWX3, HDI12

WXW WHW

WXWX3 = 3*WXW

WX2 2%W

HD12 DBLE(H)/12.0

DO 100 K = 1,3
U(2*K-1,3
u(2* ,3
DO 100 J
AA(J,K
CONTINUE
CONTINUE

)
)
)

DO 300 I
T
CWT
SWT
u(1,I)

1,2

H*(I-3)

DCOS(W*T)

DSIN(W*T)

X(1) + V(1)*(4*SWT-3*W*T)/W +
6*X(3)*(SWT-W*T) + 2%V(3)*(CWT-1.0)/W

U(2,I) = V(1)*(4*CWT-3.0) + 6*W*X(3)*(CWT-1.0) -
2%V (3)*SWT
U(3,I) = X(2)*CWT + V(2)*SWT/W
U(4,I) = =X(2)*W*SWT + V(2)*CWT
U(5,1) = 2%V(1)*(1.0-CWT)/W + X(3)*(4.0-3*CWT) +
V(3)*SWT/W
U(6,I) = 2%V(1)*SWT + 3*X(3)*W*SWT + V(3)*CWT
CONTINUE
RETURN
END

Offset P Class
0 /BLOCK /
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“WT REAL*8 1362
)BLE, INTRINSIC
NCOS INTRINSIC
DSIN INTRINSIC
[ REAL 12 *
ID12  REAL*8 960  /BLOCK /
I INTEGER*4 1350
J INTEGER*4 1346
( INTEGER*4 1342
SWT REAL*8 1370
T REAL*8 1354
) REAL*8 312  /BLOCK /
v REAL*8 4 *
W REAL*8 8 *
VX2 REAL*8 936  /BLOCK /
VXW REAL*8 944  /BLOCK /
WXWX3 REAL*8 952  /BLOCK /
X REAL*8 0 *

641 SPAGE
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643
644
645
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647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
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665
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C
C
FUNCTION F(J,I)
C
C
Com
C
C
REAL*8 AA(3,13),U(6,13),WX2,WXW,WXWX3,HD12,F
COMMON /BLOCK/ AA,U,WX2,WXW,WXWX3,HD12
C
’ GO To (10,20,30,40,50,60), J
10 CONTINUE
F=1U(2,I)
RETURN
20 CONTINUE
F = -WX2*U(6,I) + AA(1,I)
RETURN
30 CONTINUE
F=1U(4,I)
RETURN
40 CONTINUE
F = ~WXW*U(3,I) + AA(2,I)
RETURN
50 CONTINUE
F = U(6,I)
RETURN
60 CONTINUE
F = WX2*U(2,I) + WXWX3*U(5,I) + AA(3,I)
RETURN
END
Type Offset P Class
REAL*3 0 /BLOCK /
REAL*S 960  /BLOCK /
INTEGER*4 4 *
INTLGER* 0 =
REAL*8 312 /BLOCK /
REAL*8 936 /BLOCK /
REAL*8 944 /BLOCK /
REAL*S8 952  /BLOCK /

673 $PAGE
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678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
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SUBROUTINE OUTPUT (A, W, X, V, E, Q, S, CMD, TIME)

This is the output section of the system. Any further
modification of the output requirements of this model must

be done in this procedure.

the CRT or printer is needed, it is recommended that
be inserted into column 1 of all the WRITE statments.
simulation clock is updated in this procedure.

In particular, if no output to

C's
The

OO0 O0D

100

10
12
15
20
30
40

50
90

REAL *

INTEGER

8 A(3), W(3), X(3), V(3), E(3), Q(4), S(14)
CMD(7), EF, EEF, PRTFG

INTEGER * 4 TIME, T

COMMON

TIME
T

w o

/ME/ EF, EEF, PRTFG

TIME + 1
(TIME / 10) * 10 - TIME

IF ( (T .NE. 0) .OR. (PRTFG .EQ. 0)) RETURN
IF (PRTFG .EQ. 1) GO TO 100

OPEN (4, FILE = 'LPT1:")

WRITE (4, 15) TIME / 10

WRITE (4, 10) A, W

WRITE (4, 20) X, V

WRITE (4, 30) E, W

WRITE (4, 40) S

WRITE (4, 50) CMD

WRITE (4, 90)

CLOSE (4)
IF (PRTFG .NE. 2) CALL PLOT (CMD)

RETURN
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

FORMAT
FORMAT
END

3F10.6, 3X, 3F10.6)

-
-
oW o=
. . ... A =

€ W 8 v e W e e

16, ' Seconds')
3F10.6, 3X, 3F10.6)
3F10.6, 3X, 3F10.6/)
3F10.6, 3X, 3F10.6/
3F10.3/

4F10.6, 3X,F10.3/)
7110)

SN NN AN NN
o< 3

- - e w
=<

nNE<TSE

- w W e @ w a -

(" CMD =
(1HO)
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Name  Type Offset P Class

A REAL*8 0 *

CMD INTEGER*4 28 =®

E REAL*8 16 *

ECF INTEGER*4 4 /ME /

EF INTEGER*4 0 /ME /

PRTFG INTEGER*4 8 /ME /

Q REAL*8 20 *

S REAL*8 24 *

T INTEGER*4 1378

TIME INTEGER*4 32 *

Y REAL*8 12 *

W REAL*8 4 *

X REAL*8 8 =

723 $PAGE
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724 C
725 C
726 SUBROUTINE DMUL (A, B, C, N)
727 C
728 C
729 C
730 C This procedure performs a matrix multiplication of an NxN
731 C matrix A to an N-element column matrix B to yield an N-element
732 C column matrix C
733 C
734 C
735 C
736 REAL * 8  A(N,N), B(N), C(N), S
737 C
738 DO100 I =1, N
739 S = 0.0
740 DO 200 J =1, N
741 S =S + A(I,J) * B(J)
742 200 CONTINUE
743 C(I) =S
744 100 CONTINUE
745 RETURN
746 END
e Type Offset P Class
REAL*8 0 *
REAL*8 4 *
REAL*8 8 *
INTEGER*4 1714
INTEGER*4 1730
INTEGER*4 12 *
REAL*8 1722

747 SPAGE
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748 C
749 C \
750 SUBROUTINE UPDQ (Q, QQ)
751 C
752 C
753 C--
754 C
755 C This subroutine uses the previous quaternion and generates
756 C the present quaternions with restpect to the local vertical
757 C frame LVF. Quaternion algebra is used to deduce the needed
758 C computation before hand to simplify the algorithm
759 C
760 C
761 C—
762 C
763 C
764 REAL * 8 Q(4), QQ(4), Q1, Q2, Q3, Q4
765 C
766 Ql = Q(1)*QQ(4) + Q(4)*QQ(1) - Q(3)*QQ(2) + Q(2)*QQ(3)
767 Q2 = Q(2)*QQ(4) + Q(3)*QQ(1) + Q(4)*QQ(2) - Q(1)*QQ(3)
768 Q3 = Q(3)*QQ(4) - Q(2)*QQ(1) + Q(1)*QQ(2) + Q(4)*QQ(3)
769 Q4 = Q(4)*QQ(4) - Q(1)*QQ(1) - Q(2)*QQ(2) - Q(3)*QQ(3)
770 C
771 Q(1) = Q1
772 Q(2) = Q2
773 Q(3) = Q3
774 Q(4) = Q4
775 RETURN
776 END
Type Offset P Class
REAL*8 0 *
REAL*8 1738
REAL*S8 1746
REAL*8 1754
REAL*8 1762
REAL*8 4 *

777 $PAGE
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C
C
SUBROUTINE DCSINV (Q, C)
C
C
C
C
C This subroutine takes the attitude quaternion Q and returns
C the transpose of the direction cosine matrix
C
C
C
C
REAL * 8 Q(4), C(3,3)
REAL * 8 Q1, Q2, Q3, Q4
REAL * 8 Q11, Q22, Q33, Q44
REAL * 8 Ql12, Q13, Q23
REAL * 8 Ql4, Q24, Q34
C
Ql = Q(1)
Q2 =1Q(2)
Q3 = Q(3)
Q4 = Q(4)
C
Q11 =Ql1 * Ql
Q22 = Q2 * Q2
Q33 = Q3 *Q3
Q44 = Q4 * Q4
C
Q12 = 2,0 * Q1 * Q2
Q13 = 2.0 * Q1 * Q3
Q23 = 2.0 * Q2 * Q3
Ql4 = 2,0 * Ql * Q4
Q24 = 2,0 * Q2 * Q4
Q34 = 2.0 * Q3 * Q4
C
C(1,1) = Qll - Q22 - Q33 + Q44
C(2,2) = -Q11 + Q22 - Q33 + Q44
C(3,3) = -Q11 - Q22 + Q33 + Q44
C
C(1,2) = Q12 - Q34
C(2,1) = Q12 + Q34
C(1,3) = Q13 + Q24
C(3,1) = Q13 - Q24
C(2,3) = Q23 - Ql4
C(3,2) = Q23 + Ql4
RETURN
END
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Name  Type Offset P Class

C REAL*S8 4 *

Q REAL*S 0 *

Ql REAL*8 1770

Q11 REAL*8 1802

Q12 REAL*8 1834

Q13 REAL*8 1842

Ql4 REAL*S 1858

Q2 REAL*8 1778

Q22 REAL*8 1810

Q23 REAL*8 1850

Q24 REAL*8 1866

Q3 REAL*8 1786

Q33 REAL*8 1818

134 REAL*8 1874

4 REAL*8 1794

Q44 REAL*8 1826

826 SPAGE
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Line# 1 7

Hed

"“TRE
)CK

“SINV
'Q

JL

YTPRD

XGE
‘DCTL
"TTPL

VIT
VIN
\TCH

YTION
VMDL
TPUT

oT

T

1 ITGM
TNCOS
LVE
-ATE
TORE
X
'DQ
“CTOR

’ass One

Type

REAL*8

Size

968
48

48
12

80

Class

SUBROUTINE
COMMON
COMMON
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
FUNCTION
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
PROGRAM
SUBROUTINE
COMMON
COMMON
SUBROUTINE
SUBROUTINE
SUBROUTINE
COMMON
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE

No Errors Detected
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56
<<« ADAM »'

Program : A D AM

by

Dr. W. Teoh

This program uses the Adam Brashforth method to solve
the equation of motion (homogeneous case) numerically
and compares the solution with the analytical results
such that both outputs are printed.

OO0 0000O0000

OO0

@] a0

100

aO0Oo0n

REAL*8 XE(3),VE(3),X(3),V(3),A(3,10),W
REAL *8 X0(3), VO(3)

DATA A/30%0.0/

DATA N,H /10, 0.01/

WRITE (*, 30)
READ (*,32) W

get initial conditions

CALL GETINT (X0, VO, 3)

DO 100K =1, 3
X(K) = XO(K)
V(K) = VO(K)

CONTINUE

DO 10 I = 1,36000
T = 0.1*1

*%% calculate the analytical solution

CALL EXACT(T,XE,VE,W,X0,V0)



D Line#
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Name

ol

[aay
1O [

= L T ] e A

D

i
32 s

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71

<« AD

OO0 —

OO0

10

20
30
22
32

Type

REAL*8
REAL
INTEGER*4
[NTEGER*4
INTEGER*4
INTEGER*4
REAL
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8

$PAGE
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**¥* now get the numerical solution

CALL SOLVE(X,V,A,N,H,W)

o

“¥*  output every 60 seconds

JJ = (I / 600) * 600
IF (JJ .EQ. I) THEN
WRITE(*,20) T,XE,VE
WRITE(*,20) T,X,V
WRITE (*, 22)
END IF
CONTINUE

FORMAT (F7.1, 6F12.6)
FORMAT (' ORBITAL RATE '\)
FORMAT (1H )

FORMAT (F15.8)

STOP

END

Offset P Class

146
390
406
414
402
386
410
98
122
26
394
50
74
2
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72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
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SUBROUTINE EXACT(T,XE,VE,W,X,V)

*% This subroutine calculates the exact solution
of the homogeneous ODEs

OO0 O0OO0O0O0C OO0

o

Type

103

REAL*8

REAL*8
REAL

REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8

$PAGE

REAL*8 XE(3),VE(3),CWT,SWT,W, WT, X(3), V(3)

WT
SWT
CWT

XE(1)

XE(2)
XE(3)

VE(L)

VE(2)
VE(3)
RETURN
END

W*T
DSIN(WT)
DCOS(WT)

X(1) + (& * SWT = 3*WT)*V(1)/W + 6%(SWT - WT)*X(3)
+ 2 % (CWT - 1) * V(3) /W

CWT* X(2) + SWT * V(2) / W

2 % (1 - CWT) * V(1) / W + (4 - 3 * CWT) * X(3)
~SWT * V(3) / W

(4 * CWT -3) * V(1) + 6 * W * (CWT -1) * X(3)

- 2 % SWT * V(3)

CWT * V(2) - W * SWT * X(2)

2*SWT*V(1) + 3*WXSWT*X(3) + CWT*V(3)

Offset P Class

488

INTRINSIC
INTRINSIC

480

2

1

0
0
8
2

3 3% I *

472

1

6
4

#* *
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104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
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** This subroutine produces the numerical solution
to the system of equations of motion

oloNoNoNeoNotoXeRoNoNeXeo ke

OO0 — OO0O00O0n

OOO0OO0

100

LOGICAL FLAG

REAL*8 X(3), V(3), A(3,10), AA(3,13), U(6,13)
REAL*8 WX2, WXW, WXWX3, HDI12, F, W
COMMON /BLOCK/ AA, U, WX2, WXW, WXWX3, HD12
DATA FLAG /.TRUE./

pack user supplied nonhomogeneous part of DE into
the higher part of AA

DO 10I=1,10
DO 10K =1,3
AA(K,I+3) = A(K,I)
CONTINUE

if this is the first call to solve (FLAG = T), then

initialize

IF (FLAG) THEN
CALL INNIT(X,V,W,H)
FLAG = .FALSE.

END IF

use the Adam-Brashford 3-step method to advance

the solution h time units. Place the solution
back into X and V.

yI-1) +

CONTINUE
X(1) = U(1,N+3)

(
D12*(23*F(J,I-1)-16*%F(J,I-2)+5%F(J,I1-3))
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<< ADAM >

1ne# 1 7
153
154
155
156
157
158 C
159 C
160 C
161
162
163
164
165 200
166
167
168
169
170
171

oo NoNe!

e Type

REAL*8
REAL*8
REAL*8

.G LOGICAL*4

REAL

.2 REAL*8

A )

x,

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8

X3 REAL*8
REAL*8

172 $PAGE
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reset U and AA for the next call to SOLVE

V(1) = U(2,N+3)
X(2) = U(3,N+3)
V(2) = U(4,N+3)
X(3) = U(5,N+3)
V(3) = U(6,N+3)
DO 200 J = 1,6

DO 200 I =1,3
U(J,I) = U(J,N+I)
IF (J .LE. 3) AA(I,J) = AA(I,N+J)

CONTINUE

DO 300 I = 1,3
DO 300 K = 1,3
AA(K,I) = AA(K,N+I

CONTINUE
RETURN
END

Offset P Class

8
0

496

16
960
500
512
504

12
312

20
936
944
952

*

*
*

/BLOCK /
FUNCTION

/BLOCK /

/BLOCK /

/BLOCK /
/BLOCK /
/BLOCK /

0O
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173
174
175
176
177

[oNeN

ADAM >

Page 6
07-05-84
21:33:40

Microsoft FORTRAN77 V3.13 8/05/83

SUBROUTINE INNIT(X,V,W,H)

178
179
180
181
182
183

This is the initialization routine which is called only once

184
185
186
187
188
189
190
191
192
193
194 C
195

196

197

198 100
199

200

201

202 200
203 C
204

205

206

207

208

209

210

211

212

213

214

215

216

217 300
218

219

OO0 0O0O0n

REAL * 8  X(3), V(3), AA(3,13), U(6,13), WX2, WXW, WXWX3

REAL * 8 CWT, SWTI, T, W, HD12
COMMON /BLOCK/ AA, U, WX2, WXW, WXWX3, HD12
WXW = W*W
WXWX3 = 3*WXW
WX2 = 2*%W
HD12 = DBLE(H)/12.0
DO10OI=1,3
DO 100 J = 1,6
AA(J,I) = 0.0
CONTINUE
DO 200K = 1,3
U(2*%K-1,3) = X(K)
U(2*k ,3) = V(X)
CONTINUE
DO 300 =1,2
T = H*(I-3)
CWT = DCOS(W*T)
SWT = DSIN(W*T)
U(1,I) = X(1) + V(1)*(4*%SWT-3*W*T)/W +
6*X(3)*(SWT-W*T) + 2*V(3)*(CWT-1.0)/W
U(2,I) = V(1)*(4*CWT-3.0) + 6*W*X(3)*(CWT-1.0) -
2%V(3)*SWT
U(3,I) = X(2)*CWT + V(2)*SWT/W
U(4,I) = -X(2)*W*SWT + V(2)*CWT
U(5,I) = 2*V(1)*(1.0-CWT)/W + X(3)*(4.0-3*CWT) +
V(3)*SWT/W
U(6,I) = 2*V(1)*SWT + 3*X(3)*W*SWT + V(3)*CWT
CONTINUE
RETURN
END



<< ADANM

vinef 1 7
: e Type

A REAL*8
tm REAL*8

REAL
v12  REAL*8
INTEGER*4
INTEGER*4
INTEGER*4
4T REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
2 REAL*8
o REAL*8
{WX3 REAL*8
REAL*8

220 $PAGE

>>

Offset

0
560

12
960
540
544
548
568
552
312

936
944
952

Class

/BLOCK /
INTRINSIC
INTRINSIC
INTRINSIC

/BLOCK /

/BLOCK /

/BLOCK /
/BLOCK /
/BLOCK /
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22 C
23 FUNCTION F(J,I)
24 C
25 C
26 C--
27 C
28 C
29 C User supplied function
30 C
31 C
32 C
32 C
34 C
35 REAL*8 AA(3,13),U0(6,13),WX2,WXW,WXWX3,HD12,F
36 COMMON /BLOCK/ AA,U,WX2,WXW,WXWX3,HD12
37 C
38 GO TO (10,20,30,40,50,60), J
39 10 CONTINUE
40 F = U(2,I)
41 RETURN
42 20 CONTINUE
43 F = -WX2*U(6,1I) + AA(1,I)
44 RETURN
45 30 CONTINUE
A F = U(4,I)
147 RETURN
48 40 CONTINUE
149 [ = -WXW*U(3,I) + AA(2,I)
250 RETURN
251 50 CONTINUE
252 F = U(6,I)
253 RETURN
254 60 CONTINUE
255 F = WX2*U(2,I) + WXWX3*U(5,I) + AA(3,I)
256 RETURN
257 END
Type Offset P Class
REAL*8 0 /BLOCK /
REAL*8 960  /BLOCK /
INTEGER*4 4 *
INTEGER*4 0 *
REAL*8 312 /BLOCK /
REAL*8 936  /BLOCK /
REAL*8 944  /BLOCK /
{3 REAL*8 952  /BLOCK /
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O WO NG W
OO0

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
b4
45
46
47
48
49

1

Page 1
07-14-84
13:01:57
7 Microsoft FORTRAN77 V3.13 8/05/83

SPAGESIZE: 56
STITLE: '<<¢ SV X >>>!

OO0

STATE VECTOR TRANSFORMATION MODULE (SVX)

by

Dr. W. Teoh

UAH 1984

SUBROUTINE SVX (S, CMDRAW, MODE)

sEeNsieNoNoNoloNeNeNoNoNoNeoNoNoRoReo o ko RoleRoiale e e Note NaNo e

This is the state vector transformation module which accepts a
14 element state vector S of the OMV as input and generates a
6-element command string CMDRAW as output. The argument MODE
conveys the following meaning :

MODE Meaning
0 rate control
1 position control
anything else defaults to 1

Summary of the state vector components are as follows :

Component Meaning
1 X position of target vehicle from the
2 Y chase vehicle in LVF
3 z
4 VX relative velocity of the two vehicles
5 VY in LVF
6 VZ
7 LX angular momentum vector in LVF
8 LY
9 LZ
10 Ql attitude quaternions in body frame
11 Q2
12 Q3
13 Q4
14 M instantaneous mass in kg.
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50 C

51 C

52 C Summary of command string components:

53 C

54 C component meaning coord system

55 C 1 YAW body frame

56 C 2 X floor coordinate

57 C 3 Y floor coordinate

58 C 4 Z floor coordinate

59 C 5 PITCH body frame

60 C 6 ROLL body frame

61 C 7 MODE integer

62 ¢

63 C

64 C This module maintains a local counter to process initial

65 C conditions at the start of the simulation,

66 C

67 C

68 C

69 C

70 REAL * 8 S(14)

71 REAL * 8 X(3), V(3), L(3), Q(4)

72 REAL * 8 X0(3), XM(3), E(3), XHOLD(3)

73 REAL * 8 IINV(3), LB(3), W(4)

74 REAL * 8 RPY(3), QDOT(4), QW(4,4), A(3,3)

75 REAL * 8 LL, UL, UA, CC, AA, HH, QQ, TX, TY, Z

76 REAL * 8 ROLL, PITCH, YAW, ROLDOT, PITDOT, YAWDOT

77 REAL * 8 Qi, Q2, Sy, Cy, VX, Vy, VZ

78 C

79 INTEGER CMDRAW(7), COUNT, MODE

80 C

81 C *¥%* load-time initialization

82 C

83 DATA COUNT /0/

84 C

85 C *xx decompose state vector and process it

86 C

87 CALL DECOMP (S, X, V, L, Q

88 IF (COUNT .NE. 0) GOTO 300

89 C

90 C *** jnitialization before start

91 C

92 CALL ZERO (X0, 3)

93 C

94 C *¥*¥* read parameters

95 C

96 OPEN (1, FILE = 'SVXINT.DAT', STATUS = 'OLD')

97 READ (1, 20) CC, LL, AA, HH

98 READ (1, 20) IINV
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99

100

101

102

1 103
1

104 !

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

vV X >
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OO0
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*%% calculate inverse of moment of inertia tensor

DOS0K=1, 3

TINV(K) = 1.0 / IINV(K)
CONTINUE
CLOSE (1)

**¥* get conversion factors

UL = 10000.0
UA = UL
COUNT = COUNT + 1

**% get transformation matrix elements to floor coord.

E(1) = CC + LL - X0(1)
E(2) = AA - X0(2)
E(3) = HH - X0(3)

*%* jnitialize to home orientation

CALL ZERO (RPY, 3)
COUNT = COUNT + 1

(MODE .NE. 1) GO TO 400
*** position commands

*%% uypdate orientation and position

CALL QTRPY (Q, ROLL, PITCH, YAW)
CALL UPDPOS (XM, X, XHOLD, E, 3)

**% set orientation part of the command string

CMDRAW(7) =1

CMDRAW(6) = JFIX(ROLL * UA)
CMDRAW(S5) = JFIX(PITCH * UA)
CMDRAW(1) = JFIX(YAW * UA)

**%* transform to TOM B position in floor coordinates

Q0 = CC + LL * DCOS(PITCH)
#%% X-component

TX = XM(1) - QQ * DCOS(YAW)
CMDRAW(2) = JFIX (TX * UL)
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148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

V X 5>

OO0 o0

OO0

IF

OO0 aOoOco COOSO
(@)

OO0

OO0
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**%%  Y-component

TY = XM(2) - 0Q * DSIN(YAW)
CMDRAW(3) = JFIX (TY * UL)

%%  Z-component

Z = XM(3) - LL * DSIN(PITCH)
CMDRAW(4) = JFIX (Z * UL)

*%*% This is a good place to call the I/O driver to
**% transmit to TOM_B, but we won't for now

RETURN

(MODE .NE. 0) GO TO 900

*%* rate control

CALL QTRPY (Q, ROLL, PITCH, YAW)

#%% form direction cosine matrix and calculate angular
**¥¥  momentum in body frame

CALL DIRCOS (A, Q)
CALL MMUL (A, L, LB, 3)

**%  compute body rate

ROLDOT = IINV(1) * LB(1)
PITDOT = IINV(2) * LB(2)
YAWDOT = IINV(3) * LB(3)

**% construct orientation part of command string

CMDRAW(7) = O

CMDRAW(6) = JFIX (ROLDOT * UA)
CMDRAW(5) = JFIX (PITDOT * UA)
CMDRAW(1) = JFIX (YAWDOT * UA)

**%% compute velocity of TOM B in floor coordinates

Ql = LL * DSIN(PITCH) * PITDOT

Q2 = (CC + LL * DCOS(PITCH)) * YAWDOT
SY = DSIN(YAW)

CY = DCOS(YAW)

*®%%  X-component of velocity in floor coordinate



<KL
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Name

A

’XA
=C
2MDR

nef
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

AW

COUNT

ZY
)COS
JSIN

{H
INV
B
.L
10DE
'ITC

H

'ITDOT

)
)

VZ = V(3) - LL * DCOS(PITCH) * PITDOT

vV X >0
1 7
C
VX = V(1) + Q1 * CY + Q2 * SY
CMDRAW(2) = JFIX (VX * UL)
C
C ET
C
VY = V(2) + Q1 * SY - Q2 * CY
CMDRAW(3) = JFIX (VY * UL)
C
C k% Z-component
C
CMDRAW(4) = JFIX (VZ * UL)
RETURN
C
900 CONTINUE
C
C *kek
C *** position control
C
MODE = 1
GO TO 300
C
10 FORMAT (4F10.2)
20 FORMAT ( F15.8)
END
Type Offset P Class
REAL*8 466
REAL*8 558
REAL*8 542
INTEGER*4 4
INTEGER*4 538
REAL*8 698
INTRINSIC
. INTRINSIC
REAL*8 418
REAL*8 566
REAL*8 442
INTEGER*4 574
REAL*8 370
REAL*8 394
REAL*8 550
INTEGER*4 8
REAL*8 602
REAL*8 658
REAL*8 154
REAL*8 674

Y-component of velocity in floor coordinate

Page 5
07-14-84
13:01:57

Microsoft FORTRAN77 V3,13 8/05/83

We have an un-recognizable code, default to 1 for
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' REAL*8 682
T REAL*8 210
REAL*8 618
; REAL*8 242
T.DOT REAL*8 650
L REAL*8 594
s REAL*8 186

REAL*8 0 *

REAL*8 690
REAL*S 626
REAL*8 634
REAL*8 586
REAL*8 578
REAL*8 98
REAL*8 706
REAL*8 714
REAL*8 722
REAL*8 122
REAL*8 2
REAL*8 26
OLD REAL*8 74
REAL*8 50
v REAL*8 610
wDOT REAL*8 666
REAL*8 642

223 SPAGE
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224 C
225 C
226 SUBROUTINE  DECOMP (S, X, V, L, Q)
227 C
228 C
229 C
230 C This procedure decomposes the State vector S into its components
231 C which are also vectors. They have the following meaning :
232 C
233 C Vector Dimension Meaning
234 C X 3 Position vector in LVF
235 C v 3 Velocity vector in LVF
236 C L 3 Angular momentum in LVF
237 C Q 4 Unit quaternion in body frame
238 C
239 C
240 C
241 REAL * 8 S(14), X(3), V(3), L(3), Q&)
242 C
243 CALL LD (S, X, 1, 3)
244 CALL LD (S, Vv, 4, 3)
245 CALL LD (S, L, 7, 3)
246 CALL LD (S, Q, 10, 4)
247 C
248 RETURN
249 END
Type Offset P Class
REAL*8 12 *
REAL*8 16 *
REAL*8 0 *
REAL*8 8 *
REAL*8 4 *

250 $PAGE
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251 €
252 C
253 SUBROUTINE LD (A, B, M, N)
254 C
255 C-
256 C
257 C This procedure copies N elements of vector A to vector B,
258 C starting at the M-th element
259 C
260 C
261 C
262 REAL * 8 A(1l4), B(N)
263 DO 100 K =1, N
264 B(K) = A(M + K - 1)
265 100 CONTINUE
266 RETURN
267 END
Type Offset P Class
REAL*8 0 *
REAL*8 4 *
INTEGER*4 750
INTEGER*4 8 *
INTEGER*4 12 *

268 SPAGE
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269 C
270 C
271 SUBROUTINE MMUL (A, B, C, N)
272 C
273 C
274 C
275 C This procedure performs a matrix multiplication of an NxN
276 C matrix A to an N-element column matrix B to yield an N-
277 C element column matrix C
278 C
279 Commem
280 C
281 REAL * 8 A(N,N), B(N), C(N), S
282 C
283 DO 100 I =1, N
1 284 S = 0.0
1 285 DO 200J =1, N
2 286 S =S5+ A(1,J) * B(J)
2 287 200 CONTINUE
1 288 C(I) =S
1 289 100 CONTINUE
290 RETURN
291 END
Name Type Offset P Class
A REAL*8 0 *
B REAL*8 4 *
C REAL*S 8 *
I INTEGER*4 758
J INTEGER*4 774
N INTEGER*4 12 *
S REAL*8 766

292 $PAGE
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203 C
294 C
295 SUBROUTINE ZERO (A, N)
296 C
267 C
298 C
299 C This procedure initializes an N-element array A to zero at
300 C run time
301 C
302 C
303 C
304 REAL * 8 A(N)
305 DO 100 K =1, N
306 A(K) = 0.0
307 100 CONTINUE
308 RETURN
309 END
Type Offset P Class
REAL*8 0 *
INTEGER*4 782
INTEGER*4 4 *

310 $PAGE
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311 C
312 C
313 SUBROUTINE UPDPOS (XM, X, XHOLD, E, N)
314 C
315 C
316 C
317 C This procedure updates the position of the OMV in local vertical
318 C frame (XHOLD).
319 C
320 C The new position of the module in floor coordinates is then com-
321 C puted (XM)
322 C
323 C
324 C
325 C
326 REAL * 8  XM(N), X(N), XHOLD(N), E(N)
327 C
328 DO 100 K = 1, W
329 XHOLD(K) = X(K)
330 MK) = XHOLD(K) + E(K)
331 100 CONTINUE
332 RETURN
333 END
Type Offset P Class
REAL*8 12 *
INTEGER*4 790
INTEGER*4 16 *
REAL*8 4 *
XIIOLD REAL*8 8 *
REAL*8 0 =*

M

334 $PAGE
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335 C
336 C
337 INTEGER FUNCTION JFIX (RR)
338 C
339 C---
340 C
341 C This procedure properly rounds a real number R to the nearest
342 C integer.
343 C
344 C
345 C
346 REAL * 8 RR
347 REAL R
348 R = RR
349 IF (R .GE. 0) THEN
350 JFIX = IFIX (R + 0.5)
351 ELSE
352 JFIX = IFIX (R - 0.5)
353 END IF
354 RETURN
355 END
me Type Offset P Class
-IX INTRINSIC
REAL 798
REAL*8 0 *

356 $PAGE
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357 C
358 C
359 SUBROUTINE  SETQ (QW, Q)
360 C
361 C
362 C
363 C This procedure constructs a 4x4 transformation matrix QW from
364 C the attitude quaternions Q
365 C
366 C For reference, please see "Software Specifications For Docking
367 C Simulation Of The OMV" by J. Micheals, January, 1984,
368 C
369 C
370 C
371 REAL * 8  QW(4,4), Q(4)
372 C
373 DO1COI =1, 3
1 374 DO 110 J = I+1, 4
2 375 KKk =1+ J
2 376 K = KK - (KK/4) * 4
2 377 IF (K .EQ. 0) K = 2
2 378 ISGNN = 1
2 379 IF ((J .EQ. I+l1) .AND. (J.NE. 4)) ISGNN = -1
2 380 QW(I,J) = ISGNN * Q(K)
2 381 110 CONTINUE
1 382 QW(I,I) = Q(4)
1 383 100 CONTINUE
384 Qw(4,4) = Q(4)
385 C
386 DO 200 T =2, 4
1 387 KK =T -1
1 388 DO 200 J = 1, KK
2 389 QW(I,J) = -QW(J,I)
2 390 200 CONTINUE
391 RETURN
392 END
Name Type Offset P Class
! INTEGER*4 802
[SGNN INTEGER*4 818
] INTEGER*4 806
: INTEGER*4 814
K INTEGER*4 810
D) REAL*8 4 *
W REAL*8 0 *

393 SPAGE
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94
395
396 SUBROUTINE DIRCOS (A, Q)
397
398
399
400
401
402
403
404
405
406 REAL * 8 Q(4), A(3,3), QKS, QRS, Sl
407
408 DO 100 K =1, 3
409
410
411
412 A(K,K) = Q(4) ** 2
413 po100J=1, 3

414
415
416
417
418
419
420
421 IF ( J .GT. K ) THEN
422
423
424
425
426
427
428

429 S1 QSIGN (K,J)

430 QKJ = Q(K) * Q(J)
431 QRS = Q(I) * Q(4) * Sl

)
)

O —

This procedure takes the quaternion vector and generates
a 3 X 3 direction cosine matrix A

OOO0O00OO0O000

@]

**¥%  jnitialize diagonal elements

OO0

*%¥*%  fix up the diagonal elements
A(K,K) = A(K,K) + DLTKRK(K,J) * Q(J) ** 2

#%¥ pow do the off-diagonal elements

OO0 OO0

Fwk calculate index I <> J & K

I 6 / (J *K)

[]

*¥% calculate the proper sign

OO0 OO0

432 A(K,J) = 2.0 * (QKJ + QRS)
433 A(J,K) = 2.0 * (QKJ - QRS)
434 END IF

435 100 CONTINUE

436 RETURN

437 END

ame Type Offset P Class

REAL*8 0 *
INTEGER*4 838
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J INTEGER*4 830

K INTEGER*4 826

Q REAL*8 4 *

QKJ REAL 854

QKS REAL*8 Frkkx

QRS REAL*8 858

S1 REAL*8 842

438 $PAGE
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439 C
440 C
441 REAL FUNCTION DLTKRK (K,J)
442 C
443 C
444 C
445 C
446 C
447 REAL S
448 INTEGER K, J
449 S=1.0
450 IF (K NE. J) § = -1.0
451 DLTKRK = S
452 RETURN
453 END

Type Offset P Class

INTEGER*4 4 *

INTEGER*4 0 *

REAL 866
454 SPAGE
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455 C
456 C
457 REAL FUNCTION QSIGN(K,J)
458 C
459 C
460 C
461 C
462 C
463 S=1.0
464 L=J+K
465 IF (MOD(L,2) .EQ. 0) S = -1.0
466 QSIGN = S
467 RETURN
468 END
Name Type Offset P Class
J INTEGER*4 4 *
K INTEGER*4 0 *
L INTEGER*4 874
MOD INTRINSIC
S REAL 870

469 $PAGE
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.inef
470
471

SvX
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472

473
474
475
476
477
478

OOO0OO0O0

479

480
481
482
483
484
485
486
487
488
489

@]

490

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

ime

\BS
\COS
SQRT

[ONON®]

OO0

Type

REAL*8
REAL*8
REAL*8

REAL*8
REAL*8
REAL*8
REAL*8

>>>
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SUBROUTINE QTRPY (Q, R, P, Y)

This subroutine calculates a reasonable set of roll,
pitch and vaw from the quaternion Q

REAL * 8 Q(4), R, P, Y, M, THETA, CA, CB, CG
M = DSQRT (Q(1)**2 + Q(2)**2 + Q(3)**2)
calculate direction cosines CA, CB, CG

IF (DABS(M) .LE. 1.0D-20) THEN

CA = 0.0
CB = 0.0
CG = 0.0
ELSE
CA=0Q(1) / M
CB=Q(2) / M
CG =Q(3) / M
END IF

calculate angle of rotation about Euler axis
THETA = 2.0 * DACOS(Q(4))

now determine the roll, pitch and yaw

R = CA * THETA
P = CB * THETA
Y = CG * THETA
RETURN

END

Offset P Class

886

894

902
INTRINSIC
INTRINSIC
INTRINSIC

~ O
# % #
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THETA REAL*8 910
Y REAL*8 12 *

506 $PAGE
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Ane# 1 7
-1e Type

ECOMP
TRCOS

"KRK REAL
. IX  INTEGER*4
D

JL

[GN REAL
TRPY

(
roPOS
ERO

2ass One

Size

Class

SUBROUTINE
SUBROUTINE
FUNCTION

FUNCTION

SUBROUTINE
SUBROUTINE
FUNCTION

SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE

No Errors Detected
506 Source Lines
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TOM-B EXECUTIVE

---------------------------- Version 11.2 ===---eccmccccmccmcccanan.

This is the main program for the OMV on-board processing
logic.
The following steps are carried out:
l. Performs a system initialization
2. Set up an infinite loop to process each major cycle
until both CMDRAW(1l) & CMDRAW(2) are (= =99,
During each major cycle, a subroutine PMAJOR
performs all the necessary functions. It then waits
for the next cycle. The start of the next cycle is
indicated when FLAG is cleared.

Each major cycle has a period of 0.1 sec: this value is in-
put from disk during system initialization. Since
cycle execution is tracked by using this variable,
the period may be altered by changing its
value on disk.

Absolute commands will be used throughout.

It is assumed that a routine SETUP sets an interrupt schecule
and perforns all the necessary services.

OOOO0O0O00000000000000000000000000000

INTEGER ~# 4  FLAG, CMDMOD, CMDRAW(9), CMDRET(9)
INTEGER ~ 4 CYCLE

COMMON /CMMD/' CMDRET, CMDRAW, CMDVAL(9), CMDMOD, FLAG
COMMON /CYCL/ CYCLE, JSTF1

g Ahk  system initialization Anx
© CALL INITOM
g CALL GOHOME
¢
g A%* MONITOR CYCLE PROCESS A#x
c WHILE ((CMDRAW(3).GT.-99) .AND. (CMDRAW(2).GT.-99)) DO
100 IF( (CMDRAW(3).LT.-99).AND. (CMDRAW(2) .LT.-99))GOTO 900
g ##% PROCESS A MAJOR CYCLE A%
¢ CALL PMAJOR
é #*%  WAIT UNTIL NEXT CYCLE & CONTINUE A%

CALL WAIT

3
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GO TO 100
c END WHILE
900 CONTINUE
c
c Ah%x perform house cleaning before quitting #*#
c
o] CALL GOHOME
STOP
END
(o]
c
SUBROUTINE INITOM
Cc
C | ~eremcccacrvccrccecermerer e e e cccere—ccaa- - - - -
c
c This procedure performs a system initialization.
c 1. A disk data file called INITOM is accessed for the
(o4 pertinent information.
C 2. power to disk drive may then be disconnected
C 3. press <(CR) to continue.
o 4. INIT calls SETUP to establish an interrupt schedule.
c
C  eeccaccccccccccrcccccccccerrccc s rccc e s e rc e e e e r e r e e c——— e
c
INTEGER * 4 FLAG, CMDMOD, CMDRANW(9), CMDRET(9)
INTEGER DOF
INTEGER * 2 FRTBLX(20,2), FRTBLY(20,2),JETBUF(40)
REAL X, LY, MASS. MAJOR, J22
REAL MTRVRD(6), MTRVCL(6), MTRVOF(6)
REAL NAVVAL(3), NAVCAL(3), NAVOFF(6)
REAL MTRPRD(6), MTRPCL(6), MIRPOF(6)
COMMON /CMMD/ CMDRET., CMDRAW, CMDVAL(9), CMDMOD, FLAG
COMMON /DACO/ DACRDG(6), DACCAL(6), DACCOF(6)
COMMON /DYNA/ THRUST, ACC(2), LX, LY, DOF
COMMON /JETS/ NTHRX. NTHRY, FRTBLX, FRTBLY, JETBUF,SCLX.SCL’
COMMON /MOTR/ MTRPRD, MIRPCL, MIRPOF
COMMON /MOTV/ MTRVRD, MTIRVCL, MTRVOF
COMMON /NAVG/ NAVVAL, NAVCAL, NAVOFF
COMMON /PHYS/ MASS, MAJOR. JZ2Z, PIRAD
COMMON /POSN/ POSTN(9), OPOSTN(9)
COMMON /RATE/ VLCTY(9), OLDVEL({9)
COMMON /SNSR/ SNRR(3), SNRC(3), SNRB(3)
COMMON /PRCN/ EPSL, EPSA, UL, UA
COMMON /DELV/ DV(3)
(o4 Whew
c
c WRITE (*,39)
39 FORMAT (' in INITOM')
c
c
c Implementation notes
c
c PHY. QTY STANDARD MKS
C ZEEEBEEEER EXZ2XREEIECEESZESEEEETEEX TTIETFCETRTEXSRBRTI=Z
c MASS 77.64 SLUG (2500 LB) 1132.77 KG
c MAJOR 0.1 SEC 0.1 SEC
c Jz2 334.17 SLUG-FT-FT 452.95 KG-M-M
c THRUST 3 LB 13.345 NT
c LX ’ 32 IN 0.787 M
c LY 31 IN 0.762 M
c
¢ ACC 0.0773 FT/SEC/SEC 0.02356 M/SEC/SEC
c W2 0.04788 RAD/SEC 0.04788 RAD/SEC
S ~ RAarh AT anA L7 ava 110ad 4m tha madal NMY)



nc

100
110
120

130
c

140

LG = 4

OPEN (LG, FILE = 'INITOM.DAT',STATUS='OLD’)

READ (LG, 10) MASS
READ (LG, 10) MAJOR
READ (LG, 10) J22
READ (LG, 10) THRUST
READ (LG, 10) LX
READ (LG, 10) LY
READ (LG, 10) EPSL
READ (LG, 10) EPSA
READ (LG, 10) UL
READ (LG, 10) UA

READ (LG, 20) NTHRX
READ (LG, 20) NTHRY
READ (LG, 20) DOF

READ (LG, 10) SCLX
READ (LG, 10) sSCLY

DO 100 K =1, 3
READ (LG, 10) SNRC(K), SNRB(K)
CONTINUE

DO 110 K = 1, 3
READ (LG, 10) NAVCAL(K), NAVOFF(K)
CONTINUE

DO 120 K = 1, 3
READ (LG, 10) MIRPCL(K), MTRPOF(K)
CONTINUE

DO 130 K = 1, 3
READ (LG, 30) MTRVCL(K), MTRVOF(K)
CONTINUE

DO 140 K =1, 3
READ (LG, 30) DACCAL(K), DACCOF(K)
CONTINUE

"DO 200 K = 1, DOF

READ (LG, 10) POSTN(K)

QPOSTN(K) = POSTN(K)

VLCTY(K) = 0.0

OLDVEL(K) = 0.0

IF (K .LE. 3) DV(K) = 0.0
CONTINUE

NN = NTHRX * 4
DO 300 K = 1, NN
READ (LG, 20) FRTBLX(X,1l)

CONTINUE
NN = NTHRY * 4
DO 350 K = 1, NN
READ (LG, 20) FRTBLY(K.,1l)
CONTINUE
Compute other quantities

PI = 355.0 /7 113.0

MATHAMN - 10N A / N
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A = THRUST /
ACC(l)= 2 * NTHRX
ACC(2)= 2 » NTHRY
CALL SETUP
RETURN

FORMAT (F15.8)

FORMAT (I2)

FORMAT (F15.8)
END

MASS
* A
* A

SUBROUTINE  WAIT

- > > - - - — e - P M - - - .-

This procedure synchronizes TOM_B EXECUTIVE to the interrupt
service routine.

This procedure
A. Transmits the current position & orientation
main-framd computer &

to the

B. waits until interrupt service routine is completed
when FLAG is cleared.
Note that

FLAG = 0 means system is OK. TOM_B EXECUTIVE sh-
ould proceed in the normal manner.

FLAG = -1 means there is a hardware failure of
some sort. In this case, the main frame
is notified and the mission aborted.

FLAG = 1 means not ready. WHait some more.

There is no provision to halt and power down TOM_B in
case of hardware failure from software at this time.

REAL LX, LY
INTEGER ~ ¢ FLAG, CMDMOD, CMDRAW(9), CMDRET(9)
INTEGER DOF

COMMON /CMMD/
COMMON /DYNA/

CMDRET, CMDRAW, CMDVAL(9), CMDMOD, FLAG
THRUST, ACC(2), LX, LY, DOF

#*h% Report position An
CALL XMIT
kAhk  Wait until ready Anx
WHILE (FLAG .GT. 0) DO
IF (FLAG .LE. 0) GO TO 200
GO TO 100
END WHILE

**% See if there is any hardware failures A#»

IF (FLAG .GE. 0) RETURN

ax*  He have hardware failure An

DO 300 K=1,DOF

CMDRET(K) = -99
CONTINUE
#xx Tell mainframe & abort mission aw*

CALL SENDIT

oTnD



c ENDILF
C
(of
900 RETURN

END
c
Cc

SUBROUTINE XMIT
c
C  ~emeecmecctcrecccccmccccttccrercccececcccmecccc—mcccc————————
(o
c This procedure takes the current TOM_B position & places it
c in a buffer. An I / O driver SENDIT is called to transmit
o] this information to the main frame.
c All lengths are expressed in meters, while all angular quantitie
(o are expressed in radians. All must be scaled before sending.
o]
C ...........................................................
of

REAL LX, LY

INTEGER DOF

INTEGER * 4 CMDRET(9), FLAG, CMDMOD, CMDRANW(9)
COMMON /PHYS/ MASS, MAJOR, JZZ, PIRAD
COMMON /DYNA/ THRUST, ACC(2), LX, LY, DOF
COMMON /PRCN/ EPSL, EPSA, UL, UA
COMMON /POSN/ POSTN(9), OPOSTN(9)
COMMON /CMMD/ CMDRET, CMDRAW, CMDVAL(9), CMDMOD, FLAG
(€ el e i e e s s s s sk e s s s s R i s i i e e e s s se e se s s e sk R s e s sk e e s e S e 7 7k 1 7 7 o SR S s s s o ok ok ok sk ek
COMMON /RATE/ VLCTY(9), OLDVEL(9)
€ e s e e s s s s s s s e e ¢ s s s e i e e s e e e s s s s e s s e sk sk sl e s ke ke Ak ke e e ok e s s s sk sk s g e sk sk sk s
c
DO 100 K=1,DOF
FACTOR = UA
IF ((K .GT. 1) .AND. (K .LT. 5)) FACTOR = UL
TMP = POSTN(K) # FACTOR
CMDRET(K) = IFIX(TMP + 0.5)
100 CONTINUE

CALL SENDIT
c
RETURN
END
C
(of
SUBROUTINE PMAJOR
c
c - ey > - - - - - [ coacoeeee - - - - - - -
(of
c This procedure processes a major cycle by:
c A. determine its current position.
c B. determine its current velocity.
c C. decode the command sequence.
c D. decide if it needs to adjust its position/velcity
c based on the vaiue of FIRFLG : .
c l: FIRFLG # 0 ; no adjustment needed.
(of 2 : FIRFLG = 10 ; use thrusters
c 3 : FIRFLG = 1 ; use motors
c 4 : FIRGLG = 11 ; use both thrusters & motors
c E. In case when both thrusters & motors need to be
c used, the thrusters are fired first.
c
C  ememmmme——=—o-- c——coe—- vemecccccmeccremcceese e, ———— comceea
C

INTEGER FIRFLG, JSTF1

TarPE D & A cver e
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COMMUN /CYCL/ CYCLE, JSTFL

A&k jnterpret command sequence & place them in CMDVAL(1l..6)
CALL CMDFIX

Ak*x determine present position & rate L]

CALL UPDATE

A%k check to see if it is necessary to move anything A«
FIRFLG = 0

CALL DECISN (FIRFLG)

IF (FIRFLG .GE. 10) CALL THRSTR

JSTF1 = 0

Ahk see if it iIs necessary to move any motors as well i

FIRFLG = FIRFLG - 10

~A#xx IF (FIRFLG .GT. 0) CALL MOTORS

AAx  Grand exit stage left Axs

RETURN
END

SUBROUTINE UPDATE

- - - > D -y - - S - . - -

This procedure updates the position and velocities of all
the six axis of the mobile base, after having saved its
current state

The axes assignment is as follows :

Axis Dynamic quantity
ZExS= SEEETRETSEREETERT
yaw of mobile base
X

Y

VA

pitch

roll

[MEVE RSN NEY

Release notes :

o Triangulation navigation system is not ready. Position
X and Y are calculated in NAVGN instead of measured.

o Motor rate feedback is unreliable, but position feedback
is. Thus, motor rates are derived from the position feed-

vﬁck data by differentiation, until hardware is rectified.

- ———— . - - - g AP S G Y S W P D SR e R D 4D WP R e -

INTEGER » 2  MTRBUF(6), MTVBUF(6)
INTEGER * 2 SNRBUF(3), NAVBUF(3), GYRBUF(18), DACBUF(s6)

INTEGER DoF
REAL MASS, MAJOR, JZ2Z, LX, LY
REAL MTRPRD(6:, MTRPCL(6), MTRPOF(6)

(3l B d 1YV oaaialfinl o WAFSNY MTTINY ;7 WHPEIAT S LN
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REAL T "THETA, V(3), JG. W(2), VVI3)
COMMON /DYNA/ THRUST, ACC(2), LX, LY, DOF

) COMMON /PHYS/ MASS, MAJOR, JZZ, PIRAD

COMMON /POSN/ POSTN(9), OPOSTN(9)

COMMON /RATE/ VLCTY(9), OLDVEL(9)

COMMON /MOTR/ MTRPRD, MTRPCL, MTRPOF

COMMON /MOTV/ MIRVRD. MTRVCL, MTRVOF

COMMON /BUFF/ GYRBUF, NAVBUF, MTRBUF, MIVBUF, SNRBUF, DACBUF
COMMON /SNSR/ SNRR(3), SNRC(3), SNRB(3)

DO 100 K = 1, DOF
OPOSTN(K) = POSTN(K)
OLDVEL(K) = VLCTY(K)

100 CONTINUE

THETA = POSTN(1)

W(l) = VLCTY(2)
W(2) = VLCTY(3)
CALL FTB (W, THETA, VV)
V(l) = VLCTY(1l)
V(2) = WW(l)
V3) = UV(2)
DO 200K =1, 3
KK = (K-1) % ¢
JG = GYRBUF(KK+l)
DO 220 J = 2, 6
JG = JG + GYRBUF(KK+J)
220 CONTINUE
SNRBUF(K) = JG / 100000.0
V(K) "= V(K) + JG/100000.0
200 CONTINUE

c transform to floor coordinates

VLCTY(1) = V(1)

Vil) = V(2)

Vi2) = V(3)

CALL BTF (V, THETA, W)
VLCTY(2) = W(1)
VLCTY(3) = W(2)

CALL NAVGN (MAJOR, GYRBUF, 18)

*x% Find position & velocity of motors (axes 4..6)
rates are obtained by differentiation

KK = DOF - 3
IF (KK .LE. 0) GO TO 900
DO 400 K = 1, KK
ngPRD(K) = MTRBUF(K) * MTRPCL(K) + MTRPOF(K)
=K+ 3

O oo 0

POSTN(JJ) = MTRPRD(K)

VLCTY(JJ) = (POSTN(JJ) - OPOSTIN(JJ)) / MAJOR
400 CONTINUE
900 CONTINUE

RETURN
END

an

SUBROUTINE FTB (F, THETA, B)
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This subroutine takes a vector F(2) as expressed in flat floor
coordinates and transforms it to body coordinates througn a
rotation of THETA radians. The transformed vector is placed
in the array B.

REAL F(2), B(2)

c = COS (THETA)

S = SIN (THETA)

B(l) = F(l) «C + F(2) » 8

B(2) = -F(1l) # S + F(2) »C

RETURN

END

SUBROUTINE BTF (B, THETA, F)

This subroutine takes a body vector and transforms it to
flat floor coordinates via a pure rotation by THETA radians.
REAL B(2), F(2)

(o = COS(THETA)

s = SIN (THETA)

F(l) = B(l) »C -~ B(2) S

F(2) = B(l) 8 + B(2) *C

RETURN

END

SUBROUTINE NAVGN (PERIOD, JBUF, N)

This is\a temporary procedure to determine absolute position &
orientation of TOM_B by using the rate information to allow for
system checkout.

This effectively by-passes the triangulation navigation system.
This procedure must be replaced ultimately by an appropriate on
INTEGER * 2 JBUF(N)

REAL ~ 8 THETA, BODE®6

COMMON /POSN/ POSTN(9), OPOSTN(9)
COMMON /RATE/ VLCTY(3), OLDVEL(9)

coe - A AN
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THETA = BODE6(JBUF, 6, 0.0, 0.1)
POSTN(1) = THETA

DO 100 K =1, 3
DELTA = (VLCTY(K) + OLDVEL(K)) # PERIOD / 2.0
POSTN(K) = OQPOSTN(K) + DELTA

CONTINUE

RETURN
END

REAL ~ 8 FUNCTION BODE6 (F, N, A, B)

- — - - - - - T D - . - - - o S an S W W - -

This subroutine uses simpson’s rule to perform a simple

integration to obtain THETA

- ——— - - - e . - o D e - - - - - - . Y o o T e A e - e - -

INTEGER F(N)
REAL ~ 8 H, SUM

WRITE (#,39)
FORMAT (‘ in BODE')

H = (B - A) / FLOAT(N - 1)
SUM = 19.0 ~ (FLOAT(F(1)) + FLOAT(F(6)

))
+ 75.0 ~ (FLOAT(F(2)) + FLOAT(F(5)))
+ 50.0 ~» (FLOAT(F(3)) + FLOAT(F(4)))
BODE6 = 5.0 ~ H ~ SUM / 288.0
RETURN
END

SUBROUTINE CMDFIX

- . - - - - - - - - v Y - TR AR - e e e S - -

This procedure processes transmitted commands in CMDRAW and
calculate their actual values and places them in CMDVAL.

It is assumed that absolute ( and not delta ) commands will
be used. Depending on the value of CMDMOD, rate or position
commands are implemented:

CMDMOD = ¢ means rate control

CMDMOD = 1 means positional control

System of units used in TOM_B EXECUTIVE is MKS.

According to TOM BRYAN, delta commands will never be used.
but this procedure can be modified if & when delta commands
are desired.

Command index assignment:

INDEX AXIS TYPE MODE=0 MODE=1

3 vVaw ammv i) o TR o THE A 7 UAtIy
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2 T p.4 7" length T XA X
.3 L. Y length Y Y
4 yA length Zk A
S PITCH angular P P
6 ROLL angular R* R

INTEGCER * 2 FLAG, CMDMOD, CMDRAW(9), CMDRET(S9)
INTEGER DOF

REAL LX, LY, MASS, MAJOR, JZZ, PIRAD
COMMON /PHYS/ MASS, MAJOR, JZ2Z, PIRAD

COMMON /DYNA/ THRUST, ACC(2), LX, LY, DOF

COMMON /CMMD/ CMDRET., CMDRAW, CMDVAL(9), CMDMOD, FLAG
COMMON /PRCN/ EPSL, EPSA, UL, UA

Axx  CONVERT AHOY! ##x

DO 100 K=1,DOF
FACTOR = UA
IF ((K .GT. 1) .AND. (K .LT. S)) FACTOR = UL
RDG = FLOAT(CMDRAW(K)) / FACTOR
CMDVAL(K) = RDG
CONTINUE

CMDMOD = CMDRAW(7)

RETURN
END

SUBROUTINE DECISN(FIRFLG)

This procedure decides whether or not corrective action
needs to be taken by setting and returning a flag FIRFLG :

A. FIRFLG = 0 ; No acticn needed

B. O<FIRFLG(1l0 Need to move DC motors

C. FIRFLG »>=10 Need to fire thrusters

D. FIRFLG = 11 Need to do both
Decision is made based on the comparison between the com-
mand sequence & current TOM_B dynamic quantities, remem-
bering that the system at this instance is under either
position or rate control, and that the commands are absol-
ute commands.

we we e

- - - > " - - - - P W > - TR D U UL D D MDD S SR D R S s e -

INTEGER DOF, FIRFLG, FG

INTEGER * 4 FLAG, CMDMOD, CMDRAW(9),CMDRET(9)
REAL LX, LY .

COMMON /DYNA/ THRUST, ACC(2), LX, LY, DOF

COMMON /PRCN/ EPSL, EPSA, UL, UA
COMMON /CMMD/ CMDRET, CMDRAW, CMDVAL(9), CMDMOD, FLAG

“kkk Check motor section Axx

CALL CHKCMD(4 ,DOF,EPSL,EPSA,FG)
FIRFLG = FG

~kkx Check thrusters section A#a

o/ ANTIMAN AR NN OATA Y AN
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T EPSLT= 1.0E-6
EPSA = EPSL
END IF
CONTINUE .
CALL CHKCMD(1,3,EPSA,EPSL,FG)
FIRFLG = FIRFLG + FG « 10

RETURN
END

SUBROUTINE CHKCMD(FIRST,LAST,EP1,EP2,FG)

> -~ - - - - = = - — = > @ = - - - = - -

This procedure checks the absolute command against the ve-
hicle’'s position or velocity to determine if any corrective
action needs to be taken. If it does, the flag FG sill be
set. FG is either 0 or 1 on return from this subroutine.

INTEGER FIRST, LAST, FG

INTEGER + 4 FLAG. CMDMOD, CMDRAW(9), CMDRET(9)
COMMON /POSN/ POSTN(9), OPOSTN(9)

COMMON /RATE/ VLCTY(9), OLDVEL(9)

COMMON /CMMD/ CMDRET, CMDRAW, CMDVAL(9), CMDMOD, FLAG

*h% initialize loop parameters ian

FG = 0
K = FIRST
EPSLN = EP1l
Axh  check between FIRST & LAST inclusive #aa
REPEAT
T = ABS(POSTN(K))
IF (CMDMOD .EQ. 0) T = ABS(VLCTY(K))
X = ABS(CMDVAL(K))
IF (ABS(X - T) .GT. EPSLN) FG = 1
EPSLN = EP2
K=K+ 1

IF ((K .LE. LAST) .AND. (FG .EQ. 0)) GOTO 100
UNTIL K > LAST OR FG = 1

RETURN
END

REAL FUNCTION FSIGN(X)

D s e 4 > A = o D Y W - = S aE W - - -

This pgocedure returns the sign of a REAL variable as +1.0
or ~1.0.

D 5 D > - . . - - - - A Y S P W - - -

REAL X

IF (X - 0.0) 100, 200, 200
FSIGN = -1.0

RETURN

COTAN - 1 A
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RETURN
END

SUBROUTINE ITABLE

- —— - - - - - > . - e - - e S - A R A e S - - - - - -

This procedure initializes all entries of both firing tables
to zero.

INTEGER ~ 2  FRTBLX(20,2). FRTBLY(20.2)., JETBUF(40)
COMMON /JETS/ NTHRX, NTHRY, FRTBLX, FRTBLY, JETBUF, SCLX,SCLY

Ahk initialize X- firing table AAx

NX = NTHRX # 4
NY = NTHRY * 4

DO 100 K=1,NX
FRTBLX(K,2) = 0
CONTINUE

Akk  Now take care of Y- firing table #ns

DO 200 Ks1,NY
FRTBLY(K,2) = 0

CONTINUE

DO 300 K=1,40
JETBUF(K) = 0

CONTINUE

RETURN
END

SUBROUTINE TABLE(Fl,F2,NT,TBL,SCALE,NDIR)

This procedure sets up the appropriate firing table by :
A. determining the appropriate # of thrusters to be used
B. calculate the corresponding firing times. &
C. load the information in the firing table buffer.

To ensure stability of the vehicle, Fl & F2 must be symmetrized
(if such a word exists at all).

- . - - — - W AP W OB R G SR G e W R YR A e e e - - -

REAL T(2), TIME(2), LX, LY, MASS, MAJOR, JZ2

INTEGER BASE(2) ,N(2) ,DOF

INTEGER ~ 2 TBL(20,2)

COMMON /DYNA/ THRUST, ACC(2), LX, LY, DOF
COMMON /PHYS/ MASS, MAJOR, JZZ, PIRAD

#x* Calculate firing times & make them symmetric when possible
Firing times are in seconds

T(1l) = F1 / THRUST
T(2) = F2 / THRUST
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o Same EPS as in TSTFIR
c
EPS = 0.001 ~ MAJOR
c CALL SYMM(T,EPS)
g *%é  get base indes & actual firing times #an
DO 100 K=1,2
BASE(K) = (K-1) # NT + 1
™ = T(K)
IF (TM .LT. 0) BASE(K) = BASE(K) + 2 * NT
c Ahkhk calculate # of thrusters to be used kxa
c TM = ABS(TM)
CALL NMTHR(TM,NN,NT)
N(K) = NN
c #A%x NOTE: NN is the # of thrusters to be used #xx

TIME(K) = (TM / FLOAT(NN)) » SCALE / MAJOR
100 CONTINUE

#*&x Symmetrize TIME(l) & TIME(2)
CALL SYMM(TIME,EPS)
AAx f£il]l up the firing table buffer #*»

o000 oo

DO 200 K=1,2
NN = N(K)
DO 200 J=1,NN
INDEX = BASE(K) + J - 1
JM = IFIX (ABS (TIME(K)) + 0.5)
TBL(INDEX,2) = JM
200 CONTINUE

c
RETURN
END
(o
c
c SUBROUTINE SYMM(T,EPSLN)
c -— P cecvmcmceean ——mccecaceaa ——eemmee—a cecocsccnana
(of
[od This procedure symmetrizes two forces T(l), T(2) acting along
C the same line, but can be in opposite directions.
(of
c When the magnitudes of the two forces has an absolute dif-
c ference less than the required precision EPSLN the two magni-
c titudes are made to be identical.
(of
Cc This procedure is implemented hopefully to take care of minor
c truncation errors since all computations are carried out in
C single precision.
(of
c P e n e ————— - o e o o =
c
REAL T(2)
(o4
c Ax# Calculate magnitudes & signs of each force
(of
T1 = T(1)
ATl = ABS(T1)
§1 = FSIGN(TL)
(o
T2 = T(2)
AT2 = ABS(T2)

- Lol ol ) Ny Ly WY
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TT = AMIN1(AT1,AT2)

A%k Now symmetrize them #ix

IF (ABS(AT1 - AT2) .LE. EPSLN) THEN
IF (ABS(AT1-AT2) .GT. EPSLN) GO TO 100
T(l) = 81 » TT
T(2) = S2 » TT

ENDIF

RETURN
END

SUBROUTINE NMTHR(T,NN,NT)

- —— - o S G W A o - > P W W e ek

This procedure calculates the optimal number of thrusters to
be used on each side.

T : Firing time in major cycles
NN: # of thrusters to be used
NT: Total # of thrusters available on 1 side.

At present, it is decided that an ad hoc limit of S major cy-
cles will be used.

E.G. If it takes 1 thruster for 6 seconds,
we will use 2 thrusters for 3 seconds.

Thus, the # of thrusters on each side that is needed is:

NN = FIRING TIME/S
Once NN is decided, the new firing times must be readjusted to
reflect the change. This is done in the calling procedure TA-
BLE.
It is necessary that 1 (= NN <= NT

- - - - - - . - . e S8 Tn D WP L T - -

REAL MASS, MAJOR, JZ2
COMMON /PHYS/ MASS, MAJOR, JZZ, PIRAD
TX = ABS(T)

NN = IFIX (TX 7/ MAJOR + 0.5)
IF (NN .EQ. 0) NN = 1
IF (NN .GT. NT) NN = NT

RETURN
END

SUBRQUTINE LOADIT(K,TAB,JB)

" - - - - @ W W D M O WA WS B - -

This procedure takes the contents of a firing table & loads

them into the JET buffer. This feature 1s implemented for
easy future expansion when more thrusters will be added.

Here, JB(40) is the jet buffer
TAB(K,2) is the appropriate firing table
v

tm Emhmm MAD {adae
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[N eXe]

INTEGER #~ 2 TAB(K,2), JB(1l)
INTEGER TIME

TIME = TAB(K,2)
INDEX = TAB(K,l)
JB(INDEX) = TIME

RETURN
END

(p]

SUBROUTINE FIRE

This procedure loads firing times from firing tables into JETBU
and then invokes the I/0 driver LDCTR to fire the appropriate
thrusters. NOTE: LDCIR will only load the non-zero table ent-
ries.

aaoao0o0n0nn an

INTEGER #~ 2 FRTBLX(20,2), FRTBLY(20,2), JETBUF(40), IT, II
COMMON /JETS/ NTHRX, NTHRY, FRTBLX, FRTBLY, JETBUF, SCLX, SCLY

A4k  Find the larger of the two Aas

NX = NTHRX ~ 4
NY = NTHRY % 4

CALL LDBUF (NX, FRTBLX, JETBUF)
CALL LDBUF (NY, FRTBLY, JETBUF)

CALL LDCTR(JETBUF.40)

RETURN
END

(g XeXp]

(2]

SUBROUTINE LDBUF (N, T, J)

D e D S D WD D s > > - P > - W > - T - - - - - - -

This subroutine takes the contents of a firing table and per-
forms a “this is a good place for a stick up” and places the
corresponding firing times into JETBUF

e o s o o o e s o o e o . o 0 W e 0 0 0 o o o 0 T Y T e - - - -

aOO0O00000000 aon

INTEGER ~ 2 T(20,2), J(40)

DO 100 K = 1, N
IT = T(K,2)
II = T(K.1)
J(ID= IT
100  CONTINUE
RETURN
END

(9]

10
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SUBROUTINE MOTORS

. - -y W " - - - - - - . . - - - - - -

This procedure calculates the required DC motor rates, converts
them into DAC values & sends them out to the corresponding DAC.
An 1/0 driver is then called on to move the motors.

The logic depends on the command mode ( Rate or positional

control

).

It is explicitly assumed that:

The DC motors are rate driven. Therefore, the DAC ocut-
puts dictate the rate.

Each DAC is 12 bit and is wired for bi-polar output.
When position commands are used, a DC motor rate based
on a three~cycle period is used. The choice of 3 is
arbitrary, and can be adjusted in the final testing.

A.

B.
c.

- - — - . - - . - = - R S - - - - - - - - - .

REAL
INTEGER
INTEGCER
INTEGER
INTEGER
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

* 4

A~ 2

~ 2

/PHYS/
/DYNA/
/CMMD/
/POSN/
/RATE/
/DACO/
/BUFF/

Ak  Hhew !

KK = DOF -~ 3
DO 100 MOTOR=1l,KK
M = MOTOR

M3 =M+ 3

MASS, MAJOR, J2Z, LX, LY
DOF, F
FLAG, CMDMOD, CMDRAW(9), CMDRET(9)
GYRBUF(18)
NAVBUF(3) ,MTRBUF(6) ,MTVBUF(6) ,SNRBUFT (3) ,DACBUF (&
MASS, MAJOR., J2Z, PIRAD
THRUST. aACC(2), LX, LY, DOF
CMDRET. CMDRAW, CMDVAL(9), CMDMOD, FLAG
POSTN(9), OPOSTN(9)
VLCTY(9), QLDVEL(9)
DACRDG(6), DACCAL(6), DACCOF(6)
GYRBUF, NAVBUF, MTRBUF, MIVBUF, SNRBUF. DACBUF

e e o

XCMD = CMDVAL(M3)

g;gimate required rate based on mode *i
Q=X

IF (CMDMOD .NE. 0) Q=(XCMD-POSTN(M3))/(3.0+4MAJOR)

sevese

Ahk  Convert to DAC count Ak

R = Q ~ DACCAL(M) + DACCOF(M)
IR = IFIX(R + 0.5)
SR = FSIGN(R)

e sese

Make sure there is no sudden change in direction =

X = VLCTY(M3)

IX = IFIX(X * 100 + 0.5)
IF (CMDMOD .EQ. 0) THEN

IF (IX

X =0.0
GOTO 300

ELSE

NE. 0) GOTO 200

IF (FSIGN{X) # SR .LT. 0) THEN
IF (FSIGN(X) ~ SR .GE. 0) GOTO 300

e se

IR
aop

* There is sign reversal., Better stop motor no
=0
- 1 [a)
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ENDIF
ENDIF

Ahk Make sure DAC count is within limits Ax=

anoaaan

300 JR = IABS(IR)
IF (JR .GT. 2047) JR = 2047
RR = JR * SR
IR = IFIX(RR + 0.5)

#*% This is a good place to stick up #A*x

oo

DACRDG(M) = RR
DACBUF(M) = IR
100 CONTINUE
A&k Move the motors Ak

CALL MTRDRV(DACBUF,KKX)

o aan

RETURN
END

SUBROUTINE THRSTR

This procedure handles thruster logic.

aonoaooaan 00

REAL FF(2), F(2), A(2), T(3)
REAL MASS, MAJOR, J2Z, LX, LY

INTEGER DOF

INTEGER #~ 2 FRTBLX(20,2), FRTBLY(20,2), JETBUF(40)

INTEGER *» 4 FLAG, CMDMOD, CMDRAW(9), CMDRET(9)

COMMON /PHYS/ MASS, MAJOR, J2Z. PIRAD

COMMON /DYNA/ THRUST, ACC(2), LX, LY, DOF

COMMON /RATE/ VLCTY(9), OLDVEL(9)

COMMON /POSN/ POSTN(9), OPOSTN(9)

COMMON /JETS/ NTHRX, NTHRY, FRTBLX, FRTBLY. JETBUF, SCLX, SCLY
COMMON /CMMD/ CMDRET, CMDRAW, CMDVAL(9), CMDMOD, FLAG

(9]

transform acceleration vector ACC to floor coordinates

[eXeXe]

THETA = POSTN(1)
CALL BTF (ACC, THETA, A)

kk* calculate required impulses. This is mode dependent s

(oo XoNole]

IF (CMDMOD .EQ. 0) THEN

IF (CMDMOD .NE. 0) GOTO 100
FF(l) = MASS % (CMDVAL(2) - VLCTY(2)) / 2
FF(2) = MASS & (CMDVAL(3) - VLCTY(3)) / 2
TORQ = JZ2Z * (CMDVAL(l) - VLCTY(l)) / 2
GO TO 120
o] ELSE
100 CONTINUE
DO 150 K = 1, 3
v VLCTY(K)
P POSTN(K)

~ CMMNMIAT v



OE POOR QUALITY

IF (K .GT. 1) GOTO 130
AX = 2 # THRUST »~ LX / J22

AA = AX
(of IF ((C-P) .LT. 0.0) AA = -AX
GO TO 135
c ELSE
130 AA = A(K-1)
(o} END IF
135 CONTINUE
o4 WRITE (»,10) V, P, C, AA
10 FORMAT (' ', 4El5.8)
T(K) = G(V, P, C, AA)
150 CONTINUE
Tl = T(2)
T2 = T(3)
TQ = T(1)
TORQ = 0.0

IF (ABS(TQ) .LT. 0.0001) GOTO 200
TORQ = THRUST ~ LX ~ TQ

200 FF(1) = Tl » MASS » A{(l)
FF(2) = T2 ~ MASS * A(2)

c END IF
120 CONTINUE
o
(o »4%x Transform force from floor coordinates to TOM_B coords A=
c

CALL FTB (FF, THETA, F)

FX = F(1)

FY = F(2)
c
c ~k® Use control laws to calculate force along X & Y directions
c of TOM_B 4nn
(of

CALL CTRLLW(TORQ, FX,.FY,FX1,FX2,FY1l,FY2)
(of
C Akt Convert to firing times and put into firing tables A«
c

CALL ITABLE

CALL TABLE(FX1,FX2,NTHRX,FRTBLX,SCLX, 2)

CALL TABLE(FY1l,FY2,NTHRY FRTBLY,SCLY, 3)
(of
C Akh Fire them thrusters x4
(o

CALL FIRE
c

RETURN

END
C
C

SUBROUTINE CTRLLW(TORQ,FX,FY.FX1.,FX2,FY1.FY2)
c
C  emececceccecccecccccccecccces—————- g Ay
(of
c This procedure calculates FX1, FX2 from FX & FYl, FY2 from FY
c & TORQ.
(o4 It also checks that each FX1, FX2, FYl, FY2 does not exceed
(of the maximum developed thrust on TOM_B.
c
C --------------------------------- - e - ey G e D an T SR Ladad R R T
(o

REAL LX, LY

INTEGER DOF

INTEGER * 2 FRTBLX(20,2), FRTBLY(20,2), JETBUF(40)
COMMON /DYNA/ THRUST, ACC(2), LX, LY, DOF

AAssanN L TETRQ /. NTURY  armunDy CTMnr Y Cmear v TEYTRIIR A&CTY crr ey
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100

900
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s = 1.0
IF (FX .LE. FY) THEN
IF (FX .GT. FY) GOTO 100
FYl = FY /7 2.0 + TORQ / (2.0 % LY)
FY2 = FY - FY1
CALL CHECK(FY1,FY2,NTHRY,THRUST, TORQ)
IF ((FY1.LT.0.0) .AND.(FY2.LT.0.0)) CALL SWAP(FY1,FY2,S)
DF = (TORQ + S#(FY2 - FY1l) 4~ LY) / (2 * LX)
FX1 = FX /7 2.0 + DF
FX2 = FX - FX1
CALL CHECK(FX1,FX2,NTHRX,THRUST, TORQ)
IF ((FX1.LT.0.0).AND.(FX2.LT.0.0)) CALL SWAP(FX1,FX2,8)
GOTO 900
ELSE
FX1 FX /7 2.0 + TORQ / (2 &~ LX)
FX2 X - X1
CALL CHECK(FX1,FX2,NTHRX,THRUST, TORQ)
IF ((FX1.LT.0.0).AND.(FX2.LT.0.0)) CALL SWAP(FX1,FX2.5)
DTQ = TORQ + SA(FX2 - FX1) » LX
FYl = FY /7 2.0 + DTQ / (2.0 * LY)
FY2 = FY - FYl
CALL CHECK(FY1,FY2,NTHRY,THRUST, TORQ)
ENDI;F ((FY1.LT.0.0) .AND.(FY2.LT.0.0)) CALL SWAP(FYl,FY2,S)

RETURN
END

SUBROUTINE SWAP (X,Y,S)

This procedure ensures that the thrust required does not ex-

ceed the maximum thrust that TOM_B can deliver.

- - - - A - e . -

REAL LIMIT
REAL MASS, MAJOR, J2Z., PIRAD
INTEGER FG

COMMON /PHYS/ MASS, MAJOR, JZZ, PIRAD

THWE o AT L MUDIIOM L MR TAR
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S1 = FSIGN(F1)
82 = FSIGN(F2)
SQ = FSIGN(TORQ)
Fl1 = ABS (Fl)
F2 = ABS (F2)
FQ = ABS(TORQ)
IF (FQ .GT. 0.0001) GOTO 92
FQ = 0.0
SQ =1
(of END IF
22 CONTINUE
FG = 1
IF (F2 .GT. F1) FG = 2
c
IF (S1 ~ S2) 100, 200, 200
100 CONTINUE
c Fl & Fl are antiparallel
IF (F1 .GT. FM) Fl = FM
IF (F2 .GT. FM) F2 = FM
GO TO 800
c ELSE
c Fl & F2 are parallel
200 CONTINUE
DF = ABS (Fl - F2)
IF ((DF.GT.0.0001) .OR. (F1 .GT. 0.0001)) GOTO 207
Fl1 = 0.0
F2 = 0.0
GOTO 800
207 CONTINUE
BG = AMAX1 (F1,F2)
IF (BG .GT. FM) BG = FM
IF (DF .GT. FM) DF = FM
CR = BG - DF
IF (CR .LT. 0.0) CR = 0.0
IF (FG - 1) 210, 210, 220
o Fl >= F2
210 CONTINUE
Fl = BG
F2 = CR
GO TO 700
c ELSE
(o} Fl ¢ F2
220 CONTINUE
Fl = CR
F2 = BG
c END IF
c END IF

700 CONTINUE

800  CONTINUE
Fl = S1 ~ F1
F2 = S2 ~ F2
RETURN
END

REAL FUNCTION G (VO, X0, CMDX, AC)

- R L G SR P W . e - W A A e W L D e - - .-

This procedure calculates the optimum firing time for
thrusters in a direction when position control is used.

A distinction is made between a firing time <(= 1 major cycle

P B K A 3 meay dmw acvmla

1naoaonana 0n
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(o4
(o If a firing time ¢ 1/20 of a major cycle, (5 MS) it is set
C to zero.
c
(o NOTE : all dynamic variables are in floor coordinates !!!
g and time is expressed in seconds.
C  cmrrcmmmecmcmcrcmccccacm e e e r e ———— e e e e e e e e e
(o4
REAL MASS, MAJOR, JZZ, PIRAD
c COMMON /PHYS/ MASS, MAJOR. JZZ, PIRAD
c
DX = CMDX - X0
SV = FSIGN(V0)
SD = FSIGN(DX)
IF ((X0 .LT. 0.) .AND. (CMDX .LT. 0.)) GOTO 32
IF (DX .GE. 0) GOTO 31
XX0 = CMDX
CMD = X0
GOTO 38
c ELSE
31 XX0 = X0
CMD = CMDX
GOTO 38

32 CONTINUE
IF (DX .GE. 0.0) GOTO 33
XX0 = X0
CMD = CMDX
GOTO 38
33 CONTINUE
XX0 = CMDX
CMD = X0
C END IF
38 CONTINUE

D = ABS (DX)
V = ABS (V0)
A = ABS (AC)

IF (SD ~ SV .GT. 0.0) GO TO 50

00 o

DX and V0 are anti-parallel

Tl =V / A

RA =Tl ATl + 2 4AD /A
T2 = SQRT (RA)

G =85D 4 (T1 + T2)
RETURN

DX and VO are parallel

0 CONTINUE
T = MAJOR

X = ABS (XX0)

X1 ABS (XX0) + V A T
X2 X1 + A AT T/ 2.0
XC ABS (CMD)

DO CASE

1: XC <= X1
IF (XC .GT. X1) GO TO 200
RA =T T - 2.0+ (X1 -XC) /A
IF (RA .LT. 0.0) GO TO 250

N e N .o CATM /A

LisTeKe]

anoa



’ , - RETURN
c ELSE

250 RA =V AV -2 &A% (XC-¥X)
G = -5D * (V + SQRT(RA))
RETURN
C END IF
P of
(o} 2: X2 >= XC > X1
200 CONTINUE

IF (XC .GT. X2) GO TO 300
RA =T +~T+ 2 % (X1 -XC) /A
IF (RA .LT. 0.0) GO TO 300
TF = T - SQRT(RA)
G = SD A~ TF
RETURN
END IF

3: XC ) X2
00 CONTINUE
TF = (SQRT(V # V + 2.0 * A # D) - V) /7 A
G = SD » TF .
RETURN

END CASE
END

waOOo

O o000
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